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As a severe water quality problem, Harmful 
Algal Blooms (HABs) pose serious threats 
to human health, aquatic ecosystem health, 

and recreational activities (Brooks et al. 2016; Le 
Moal et al. 2019). They are commonly linked to 
eutrophication, a process resulting from increasing 
accumulation of Nitrogen (N) and Phosphorus 
(P) from anthropogenic activities (Beusen et al. 
2016). These nutrients sometimes trigger excessive 
growth of cyanobacteria or cyanophyceae that 
produce cyanotoxins such as cylindrospermopsin 
and microcystin (Paerl 2009). Consumption of 
HAB-contaminated 昀椀sh or direct contacts can cause 
harmful health implications to community residents, 
especially children (Heil and Muni-Morgan 2021).

Because of health and environmental concerns, 
monitoring HABs outbreaks and their dynamics 
are imperative for managing water quality. 
However, the current HABs monitoring programs 
largely rely on regular funding from governmental 
agencies and/or volunteering e昀昀orts from the 

communities for collecting water samples and 
conducting biochemical testing. Such programs 
are often constrained by limited spatial coverage, 
sample size, and sampling frequency due to 
formidable 昀椀nancial and labor costs (Lomax et al. 
2005; Palmer et al. 2015). Therefore, monitoring 
the conditions of HABs using cost-e昀昀ective tools 
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recently been applied as a cost-e昀昀ective tool for HABs monitoring. In this study, HABs in two small lakes 
in Southern Illinois (Carbondale Reservoir and the Campus Lake of Southern Illinois University) were 

monitored using UAVs and biomass concentrations in lake waters. By analyzing vegetation indices derived 

from multispectral UAV images and chlorophyll-a concentrations in the two lakes, statistical regression 

models were established for each waterbody. The model relates spectral characteristics of the lake water 

to its algae biomass. It was found that normalized di昀昀erence vegetation index (NDVI) and blue-to-green 
band ratio are the best-昀椀t indices to the variation in chlorophyll-a in Carbondale Reservoir and the Campus 

Lake, respectively. The 昀椀ndings in this study can be used for monitoring HABs using UAVs in these lakes 
in the future.
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Research Implications

• A UAV-based work昀氀ow was developed to 
monitor harmful algae blooms in two small 

lakes in Southern Illinois.

• Spectral indices such as NDVI and blue-to-

green band ratio have proven to be useful 

indicators for HABs monitoring.

• The relationships between chlorophyll-a 

and spectral indices vary by waterbodies.

• The 昀氀exibility and low cost of UAVs allow 
cost-e昀昀ective community-based HABs 
monitoring programs.
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is critical to develop coping strategies to mitigate 
and manage their outbreaks.

Remote sensing has proven to be an e昀昀ective 
tool for monitoring toxic algal blooms over large 
water bodies (Anderson 2009). As chlorophyll-a 
(Chl-a) is a typical estimator of phytoplankton 
biomass (Huot et al. 2007; Kasprzak et al. 2008), 
remote sensing provides a cost-e昀昀ective solution 
to monitor HABs conditions by evaluating 
spectral signatures of Chl-a (Kubiak et al. 2016). 
Conventionally, the monitoring approach was 
mainly implemented using satellite remote 
sensing imagery (Matthews 2014). Wolny et al. 
(2020) detected HABs in the Chesapeake Bay 
using multispectral data products from Sentinel-3 
satellites and identi昀椀ed HABs species based 
on in-situ phytoplankton data and ecological 
characteristics including salinity/temperature 
regimes, nutrient preferences, time of year, and 
locations within the Chesapeake Bay. Ma et al. 
(2021) propose a multi-source remote sensing 
approach for HABs monitoring in Chaohu Lake, 
China, which integrates MODIS, Landsat 8 OLI, 
and Sentinel-2A/B. However, the reliability of 
most satellite-based models is subject to a few 
limitations, including low spatial resolution (e.g., 
30-meter for Landsat and 500-meter for MODIS 
images), relatively long revisiting 昀氀yover periods 
(e.g., ~15 days for Landsat), uncertainties of image 
quality associated with clouds, and formidable 
costs of high-quality images (Lomax et al. 2005). 

Unmanned Aerial Vehicles (UAVs), also 
known as drones, or unmanned aircraft system 
(UAS), have been increasingly utilized in HABs 
monitoring in the recent decade (Wu et al. 2019). 
Compared with satellite platforms, they have 
demonstrated a few unique advantages for HABs 
monitoring including high spatial resolution (in 
the scale of centimeters), 昀氀exible scheduling, and 
customizable combined spectral properties (e.g., 
coupling di昀昀erent optical and/or thermal sensors) 
(Kislik et al. 2018; Manfreda et al. 2018). As an 
emerging alternative to satellite-based monitoring, 
UAVs, equipped with multispectral sensors, have 
demonstrated successful cases in monitoring algal 
blooms. Fráter et al. (2015) found that UAVs 
allow identi昀椀cation of gradual growth of algae 
that is hard to observe onshore. Lyu et al. (2017) 
established a HABs monitoring framework using 

a UAV, which allows responsive monitoring of 
algae blooms. Kim et al. (2021) used a UAV to 
successfully develop three spectral indices for 
monitoring algae in a stream. However, most of 
these projects were conducted in a single water 
body without intercomparing spectral responses 
from di昀昀erent waters. 

In this context, the objective of this project is to 
develop UAV-based monitoring models that can be 
used to monitor the HABs in two di昀昀erent lakes in 
Southern Illinois. We developed vegetation indices 
based on spectrum bands collected by a UAV and 
established a remote sensing inversion model that 
can statistically relate the spectral characteristics 
of UAV images to algae biomass. By comparing 
models with di昀昀erent vegetation indices, we 
determine the best-昀椀t models for monitoring HABs.

Methodology

General Work昀氀ow
Figure 1 shows the general work昀氀ow of UAV-

based HABs monitoring. First, we collected water 
samples from locations near the shorelines of the 
proposed water bodies. Those water sampling 
locations were clearly marked using permanent 
marks that were recognizable from drone images. 
Second, a DJI Phantom Matrice-100 with an 
onboard MicaSense RedEdge-MX multispectral 
sensor was used to capture the images of water 
bodies in 昀椀ve bands that can be used to derive 
spectral indices. Third, linear regression models 
were used to establish the relationships between 
the Chl-a biomass indicators and spectral indices.

Study Area 

Carbondale Reservoir and the Campus Lake, 
both located near or at Southern Illinois University 
(SIU), were selected for developing the UAV-based 
monitoring procedure. Two sampling points from 
each water body were selected and labeled as Site 
1 and 2. Table 1 and Figure 2 show the locations of 
these water sampling sites for statistical analysis. 

Data Collection

Our datasets include (1) 5-band UAV images 
collected from May to October 2021 (Bands: Red, 
Green, Blue, Near Infrared, Red Edge), and (2) 
water samples for testing Chl-a (unit µg/L) that 
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were collected at the same time with the UAV 
images collection. 

UAV Images Collection. A DJI Phantom UAS 
equipped with a multispectral sensor, RedEdge-
MX, was used to collect aerial images in 昀椀ve 
spectral bands (Figure 3). As a professional 
multispectral camera, RedEdge-MX is capable of 
simultaneously capturing Blue (B, 475 nm ± 20 
nm), Green (G, 560 nm ± 20 nm), Red (R, 668 nm 
± 10 nm), Near infrared (NIR, 840 nm ± 40 nm), 
and Red Edge (RE, 717 nm ± 10 nm) bands with 
1280 x 960 pixels. Figure 4 shows the spectral 
re昀氀ectance of 昀椀ve image bands at those water 
sampling sites. 

Determination of Chl-a Concentration. Water 
samples were collected at each labelled location. 
Water sampler (dipper) and glass bottles autoclaved 
at 121°C were used to collect samples from the 
shoreline of the lake at ~ 0.5 m depth. Sampling 
was conducted once per month from March 2021 
to October 2021. After collecting samples, they 
were stored at 4°C in glass bottles for lab tests. 

Chl-a concentrations of the water samples were 
measured to determine the biomass of algal species.

The Chl-a concentration was determined by a 
UV-vis spectrophotometer (Thermo BioMate 3S) 
based on a method from literature (Sartory 1982). 
Brie昀氀y, water samples of varying volumes (volume 
ranging from 20 mL to 400 mL) were 昀椀ltered in 
0.45 µm nitrocellulose membrane 昀椀lters to collect 
wet algae samples. Filter paper was then rolled 
and placed into a 15 mL centrifuge tube. Freshly 
prepared 95% ethanol of 10 mL was added to each 
tube. The tube was then kept in a water bath at 78℃ 
(boiling point of ethanol) and was boiled for 5 min 
at that temperature. The tube was then removed 
from the water bath and kept in the dark for 24 h 
at room temperature. After 24 h, it was centrifuged 
at 4000 rpm for 5 min. From the tube, 4 mL of the 
supernatant was taken into a 1 cm pathlength cuvette 
and was placed in a UV-vis spectrophotometer. 
Solvent (95% ethanol) was used as the blank. Peak 
absorbance reading was taken at 665 nm. Then the 
sample was acidi昀椀ed in the cuvette by adding 120 
µL of 0.1 mol/L HCl solution. The cuvette was 

Figure 1. General work昀氀ow for developing statistical HABs predictive models.
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Figure 2. Location maps for Carbondale Reservoir (A) and the Campus Lake (B).

Table 1. Sampling locations for developing statistical models.

Location Latitude Longitude

Carbondale Reservoir
Site 1 37° 41' 58.5" N 89° 13' 45.5" W

Site 2 37°42' 00.5'' N 89°13' 32.7'' W

Campus Lake
Site 1 37°42' 27.5'' N 89°13' 29.1'' W

Site 2 37°42' 29.1'' N 89°13' 24.7'' W
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Figure 4. Spectral re昀氀ectance from each UAV image band.

shaken and after 4 min, the absorbance was re-read 
by scanning for the peak between 664 and 666 nm. 

The following equation was used to calculate the 
concentration of Chl-a from the absorbance reading:

Chlorophyll-a concentration (mgL-1) = 

where:

• E
665,0

 is the absorbance at 665 nm before 
acidi昀椀cation;

• E
665,a

 is the absorbance at 665 nm after 
acidi昀椀cation; 

• R is acid ratio;
• K is absorbance coe昀케cient of Chl-a in ethanol, 

(E
665,0

 ₋ E
665,a 

) ×            ×       ×
R

R - 1

K

L

V
extract

V
sample

which equals to 1000/(speci昀椀c absorption 
coe昀케cient); 

• L is pathlength of cuvette (1 cm); 

• V
extract

 is volume of extract used as solvent in 
liters (10 mL, i.e., 0.01 L); and 

• V
sample

 is volume of water sample 昀椀ltered in 
liters. 

An acid ratio of 1.72 and a speci昀椀c absorption 
coe昀케cient of 83.6 L(g·cm)-1 have been used for 
ethanol extraction.

UAV Image Processing and Spectral Indices 

Calculation

Pix4Dmapper image processing software was 
used to automatically conduct the image stitching, 

Figure 3. The UAV equipment used for data collection.
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radiometric calibration, and orthoimage generation. 
To 昀椀x the potential geometric distortion and 
topographic displacement, eight Ground Control 
Points (GCPs) for each lake were set up and applied 
for polynomial image correction. The original 
calibration panel accompanying the multispectral 
sensor was used for radiometric correction. The 
examples of stitched images from both lakes are 
shown in Figure 5. 

Then ArcGIS georeferencing tool was used to 
assign the ground truth coordinates to matched 
pixels on stitched UAV images. The spectral 
values of image pixels at water sampling sites 
were extracted using the ArcGIS Spatial Analyst 
toolset. Seven indices were used to estimate 
the relationships between Chl-a and spectral 
indices. As shown in Table 2, these UAV-derived 
spectral indices have been applied in di昀昀erent 

HABs monitoring projects based on reports in the 
literature. 

Statistical Regression Models Development

Linear regression models describe a continuous 
response variable as a function of one or more 
predictor variables, which are commonly applied 
to analyze environmental data and predict the 
dynamics of an ecosystem. In this paper, linear 
regression models were used to establish the 
relationships between Chl-a and the spectral 
indices. For each index, simple linear regression 
was applied with its values as independent variables 
to estimate the correlation with concentrations 
of Chl-a. The performance of each model was 
evaluated by Coe昀케cient of Determination (R2). A 
best-昀椀t model was identi昀椀ed to determine the best-
昀椀t spectral indices for HABs monitoring. Based on 

Figure 5. Stitched UAV images from Carbondale Reservoir (A) and the Campus Lake (B). 
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the best-昀椀t model, the Chl-a concentration can be 
predicted from the UAV-based spectral indices.

Results and Discussion

Table 3 shows a summary of goodness-of-
昀椀t for linear regression models with di昀昀erent 
spectral indices. It was found that NDVI, BNDVI, 
GNDVI, and RVI exhibit signi昀椀cant positive 
relationships with the concentrations of Chl-a in 
Carbondale Reservoir. In particular, NDVI was 
used to establish the best-昀椀t model based on the 
coe昀케cients of determination (R2 = 0.4881, Figure 
6a). As high chlorophyll concentration re昀氀ects 
more near-infrared light but absorbs more red light, 
NDVI, measuring the contrast between NIR and red 
light, would increase when the algae (chlorophyll) 
density increases. That makes NDVI become a 
sensitive indicator of lake algae greenness. For 
the Campus Lake, most spectral indices exhibit 
no statistically signi昀椀cant relationship except for 
NDRE (R2  = 0.4674) and B/G (R2  = 0.3915), which 
present signi昀椀cant inverse relationships with Chl-a 
(Figure 6b). 

The positive relationship between NDVI 
and Chl-a identi昀椀ed in Carbondale Reservoir is 

consistent with most literature (Zhang et al. 2011; 
Goldberg et al. 2016; Salarux and Kaewplang 
2020; Ma et al. 2021). The inverse relationship 
between B/G and Chl-a found in the Campus Lake 
is consistent with Piech et al. (1978), Woźniak 
and Stramski (2004), and Zeng et al. (2016). Kim 
et al. (2021) show that the spectral index NDRE 
had an insigni昀椀cant statistical relationship for 
water quality monitoring. Song and Park (2020) 
did not see the signi昀椀cant change of NDRE when 
aquatic plants had proliferated. However, Che 
et al. (2021) proved that the strong and positive 
correlations existed between Pyropia yezoensis 
(a type of red macroalgae) biomass and NDRE. 
Therefore, blue-to-green re昀氀ectance ratio is 
deemed as the best-昀椀t model predictor of Chl-a 
for the Campus Lake (Figure 6b). 

In addition, Figure 6 indicates that the 
relationships between spectral indices and Chl-a 
vary at di昀昀erent lakes. Piech et al. (1978) attributed 
such inter-lake variations to di昀昀erent trophic status. 
Di昀昀erent phytoplankton community and water 
constituents like chromophoric dissolved organic 
matter (CDOM) or mineral particles could also be 
the potential factors as they could modulate speci昀椀c 

Table 2. Spectral indices used to estimate Chl-a according to relevant literature.

Index Name Formula Reference

NDVI
Normalized Di昀昀erence 

Vegetation Index
Cai et al. 2021

BNDVI
Blue Normalized Di昀昀erence 

Vegetation Index
Van der Merwe and Price 2015

GNDVI
Green Normalized Di昀昀erence 

Vegetation Index
Goldberg et al. 2016

NDRE
Normalized Di昀昀erence 

Red Edge
Song and Park 2020

RVI Ration Vegetation Index Han and Rundquist 1997

CVI Chlorophyll Vegetation Index Balogun et al. 2020

B/G Band Ratio Zeng et al. 2016

NIR - Blue

NIR + Blue

NIR - Red

NIR + Red

NIR - Green

NIR + Green

NIR - Red Edge

NIR + Red Edge

NIR

Red

Blue

Green

NIR * Red

Green2



90

UCOWRJournal of Contemporary Water Research & Education

Monitoring Algae Blooms in Small Lakes Using Drones: Case Study in Southern Illinois

Table 3. Statistical relationships between each spectral index and Chl-a (*p-value < 0.05).

Lake Spectral Index R Square p-value (α = 0.05)

Carbondale Reservoir

NDVI 0.4881 0.0115*

BNDVI 0.4262 0.0214*

GNDVI 0.3932 0.0291*

NDRE 0.1809 0.2204

RVI 0.4137 0.0241*

CVI 0.1871 0.1602

B/G 0.0280 0.6033

Campus Lake

NDVI 0.1009 0.3143

BNDVI 0.0873 0.3511

GNDVI 0.2190 0.1249

NDRE 0.4674 0.0142*

RVI 0.0970 0.3243

CVI 0.1434 0.2247

B/G 0.3915 0.0295*

spectral re昀氀ectance patterns and refractive indices 
(Woźniak and Stramski 2004; Zeng et al. 2016). 

There are a few limitations to note in this 
project. First, we only collected water samples 
from two near-shore locations from each lake 
due to budget constraints in this concept-proof 
project. In this case, water sampling sites do not 
necessarily represent the conditions in the entire 
water bodies. Rather, the variabilities of tested 
and modeled Chl-a more re昀氀ect the temporal 
patterns of water quality. The small sample size 
could also limit the accuracy of regression models, 
since it may not have su昀케cient statistical power 
to detect signi昀椀cant relationships between Chl-a 
and spectral indices. To overcome the limitations, 
future research will be designed to expand to larger 
sample sizes and more sampling locations.

Conclusions and Policy Implications

UAVs, as an emerging remote sensing 
technique, have proven to be cost-e昀케cient, 
昀氀exible, and reliable tools for environmental 
monitoring in open waterbodies. This study shows 
the e昀昀ectiveness and robustness of a UAV and its 

onboard multispectral sensor for monitoring HABs 
in two waterbodies from Southern Illinois. Seven 
vegetation indices were tested for estimating algae 
biomass in Carbondale Reservoir and the Campus 
Lake of SIU. Results show that the speci昀椀c 
relationships between algae biomass (Chl-a) and 
vegetation indices vary by di昀昀erent waterbodies, 
which is likely due to the complex compositions 
of each lake. NDVI was found to be the best-昀椀t 
spectral index for Carbondale Reservoir, while 
Blue-Green ratio was the best predictor for the 
Campus Lake of SIU. In our future work, we 
plan to substantially expand the number of water 
sampling locations and increase the sample size in 
each location. We expect to further examine and 
verify these statistical relationships that may be 
directly applied for UVA-based HABs monitoring.

With increasing anthropogenic activities, HABs 
have become one of the major water quality 
problems that harass communities around the world. 
There are critical needs for monitoring the onset and 
progress of HABs for public safety. However, due 
to funding limitations, many small water bodies 
that have been intensively used for drinking and 
recreation by communities were largely uncovered 
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by government-initiative monitoring programs. 
Due to its 昀氀exibility and lower operational cost, 
multispectral UAVs have shown tremendous 
potential for developing community-based HABs 
monitoring programs that may be operated by local 
municipalities or even homeowner organizations. 
It may serve as one of the promising solutions to 
the ‘last mile’ problem of broader policies for 
ensuring public water safety (Cheng 2015; Da 
Mata et al. 2021). In combination with emerging 
water technologies such as water treatment using 
magnetic nanomaterials under solar light (Madany 
et al. 2021), a UAV-based monitoring program may 
be used to guide in-situ, low-cost treatment of areas 
with high HABs concentrations. In addition, drone-

based HABs monitoring programs can be potentially 
integrated with existing governmental funding 
programs as a supplemental monitoring e昀昀ort. For 
example, such a program may be integrated with the 
Harmful Algal Bloom Program and the Volunteer 
Lake Monitoring Program in Illinois. 
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