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S
uspended sediments play a signi昀椀cant role in 
昀氀uvial environments. Sediment is constantly 
being transported and deposited in a water 

system, therefore, a昀昀ecting channel geomorphology 
and ecological services. These characteristics 

impact channel navigability and ecological health, 

and should be monitored frequently. Methods for 

estimating suspended-sediment concentration 

(SSC) in 昀氀uvial environments have evolved over 
several decades, from in-situ measurements to 

multiple surrogate methods. Laser di昀昀raction 
instruments, such as the Laser In-Situ Scattering 

and Transmissometry (LISST), can be submerged 

in water to directly measure laser di昀昀raction, and 
therefore indirectly measure SSC (e.g., Gray and 

Gartner 2010; Felix et al. 2017; Dos Santos et al. 

2018). Acoustic instruments such as an acoustic 

Doppler current pro昀椀ler (ADCP) can measure 
acoustic backscatter in water, which has been 

correlated to SSC and can therefore be converted 

to provide a surrogate measurement of SSC (e.g., 

Landers 2012; Guerrero et al. 2017).

Remote sensing can also be used as a surrogate 

method to monitor water quality parameters such 

as SSC, chlorophyll, and temperature because 

changes in these parameters alter the energy spectra 
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of re昀氀ected solar and/or emitting thermal radiation 
from surface waters (Ritchie et al. 2003; Pereira 

et al. 2018; Peterson et al. 2018). Remote-sensing 

techniques of measuring SSC use surface re昀氀ectance 
measured by multispectral sensors in satellites or 

cameras. Surface re昀氀ectance can be correlated to 
SSC to provide an indirect measurement of SSC by 

creating surface re昀氀ectance-SSC models. Publicly 
available remote-sensing satellite imagery, such 

as Landsat, can be used to obtain cost-free data 

for monitoring spatial and temporal trends in 

SSC. Remote sensing as a surrogate method for 

monitoring SSC is particularly valuable for the 

Mississippi River as the United States Geological 

Survey (USGS) currently does not monitor SSC at 

any Mississippi River gauge stations, with 2018 

being the last year of record.

Pereira et al. (2018) developed an empirical 

relationship between surface re昀氀ectance from 
Landsat satellites and SSC for the Middle-

Mississippi River (MMR). Three empirical SSC 

models were developed for the following satellites: 

Landsat 4-5 Thematic Mapper (TM), Landsat 

7 Enhanced Thematic Mapper Plus (ETM+), 

and Landsat 8 Operational Land Imager (OLI)/

Thermal Infrared Sensor (TIRS). The models were 

created to be used for further SSC studies along the 

MMR and its tributaries. However, when applied 

outside of the speci昀椀c USGS gauge locations, 
several SSC values were predicted as negative 

values due to the linear form of the equations. 

The objectives of this study were to develop 

re昀氀ectance-SSC regression models using a power-
function form and demonstrate their extrapolation 

performance using multiple novel applications in 

the MMR basin. The re昀氀ectance-SSC regression 
models were applied to the following conditions: 

1) mixing at the Mississippi and Missouri River 

con昀氀uence, 2) point-source pollution, and 3) SSC 
changes along the entire MMR reach for a range 

of discharges. The regression models were also 

used to develop sediment rating curves for the four 

largest tributaries of the MMR.

Background

Several studies have investigated the 

relationship between Landsat surface re昀氀ectance 
and SSC (Richie et al. 1976; 1987; 1988; Topliss et 

al. 1990; Lathrop 1992; Mertes et al. 1993; Islam 

et al. 2001; Doxaran et al. 2003; Peterson et al. 

2018). Ritchie et al. (1976) was one of the earliest 

studies to identify the optimum wavelength 

for quantitatively determining SSC of surface 

water from remote sensing. The study employed 

measured surface SSC data and spectrometer-

measured re昀氀ected and incident solar radiation 
from six reservoirs in northern Mississippi, along 

with re昀氀ected solar radiation measurements from 
Landsat 1. The study found that the best spectral 

region to obtain a quantitative relationship 

between re昀氀ected solar radiation and SSC from 
surface water would be between 700 and 800 

nm. Ritchie et al. (1987) developed multiple 

linear regression equations to estimate SSC in the 

surface water of Moon Lake from measured SSC 

data and re昀氀ectance measurements from Landsat 
Multispectral Scanner (MSS) data. Ritchie et al. 

(1988) tested the equations by comparing the 

predicted SSC with measured SSC from Moon 

Lake, an old oxbow lake o昀昀 the Mississippi River 
in northwest Mississippi. The 1988 study found 

that when comparing single variable regressions 

with multiple variable linear regressions, the root 

mean squared error improved when adding up to 

three variables, but there was no improvement 

between three and four variables. The study also 

determined that the best equations for estimating 

SSC were based on Landsat MSS Near-Infrared 

(NIR) band (700 to 800 nm), but because 

of the linear form, all equations appeared to 

underestimate SSC at high concentrations. 

Lathrop (1992) studied the relationship between 

Landsat 4-5 TM re昀氀ectance and measured 

Research Implications

• Provides a surrogate method to monitor 

suspended-sediment concentration (SSC) 

along the Middle-Mississippi River where 

SSC is not currently being monitored by the 

United States Geological Survey (USGS).

• Reduces the need for in-situ collection 

of SSC, therefore reducing labor and 

laboratory needs.

• Provides a method that can be used to 

develop similar models with available 

historical SSC and Landsat data.
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SSC from the Green Bay-Lake Michigan and 

Yellowstone Lake in Wyoming. The study found 

that the re昀氀ectance in the longer red and NIR 
wavelengths increased faster than in the shorter 

blue and green wavelengths. Lathrop (1992) also 

showed that the relationship between individual 

band re昀氀ectance and the ratio band combinations 
is nonlinear, approximating the general form 

of a power model. Long and Pavelsky (2013) 

compared 31 published empirical equations using 

a 昀椀eld dataset containing 147 observations of 
SSC and in-situ spectral re昀氀ectance to identify 
an appropriate re昀氀ectance-SSC model. Success 
of the re昀氀ectance-SSC models was contingent on 
the equation meeting the following criteria: 1) use 

of the NIR band in combination with at least one 

visible band, 2) development based on SSC like 

those in the observed region, and 3) use of a non-

linear equation form (Long and Pavelsky 2013).

Regression Model Development

Data and Study Area

Landsat Satellite Data. The Landsat project is part 

of the Remote Sensing Missions component of 

the USGS Land Remote Sensing (LRS) Program. 

Landsat satellites have been collecting remote-

sensing data for over 40 years with a temporal 

resolution of 16 days for each satellite. Landsat has 

the longest temporal record of moderate resolution 

multispectral data of the Earth’s surface on a global 

basis. Data from Landsat 4-5 TM, 7 ETM+, and 8 

OLI/TIRS were used for this study.

Landsat 4-5 TM has data available from July 
1982 until January 2013, Landsat 7 ETM+ has 
data from April 1999 to April 2022, and Landsat 

8 OLI/TIRS has data available from February 

2013 until the present. Landsat 4-5 TM collection 

includes six, 30-m resolution spectral bands 

ranging from visible green to NIR wavelengths, 

two shortwave infrared (SWIR) bands, and a 120-

m resolution thermal infrared (IR) band. Landsat 7 

ETM+ collection includes 30-m resolution visible, 

NIR and SWIR bands, a 60-m resolution thermal 

band, and a 15-m panchromatic band. Landsat 8 

OLI/TIRS collection includes 30-m resolution 

visible, NIR and SWIR bands, a 15-m resolution 

panchromatic band, two thermal bands, a coastal-

aerosol band, and a band for cirrus cloud detection. 

In 2016, the USGS started reorganizing 

the Landsat archive into a formal tiered data 

collection structure. Tier 1 (T1) data have the 

highest available geometric and radiometric 

quality. They include precision terrain processing 

and have been inter-calibrated across the Landsat 

sensors. The equations from Pereira et al. (2018) 

were developed using Landsat data before the 

application of this collection structure, and utilized 

all the images without the tier quality indicator. For 

this study, only T1 data were used for developing 

the regression models.

USGS Water Quality Gauge Stations. The USGS 

operates several gauge stations throughout the 

MMR, but only a small fraction of the stations has 

historical SSC data. This study used daily SSC data 

from four USGS gauge stations: i) Thebes, Illinois 

on the Mississippi River; ii) Hermann, Missouri 

on the Missouri River; iii) Chester, Illinois on the 

Mississippi River; and iv) St. Charles, Missouri 

on the Missouri River (Figure 1). These data 

were accessed through the USGS National Water 

Information System (NWIS) Web Interface. The 

beginning and end dates of the periods of record 

used in this study at each gage site are listed in 

Table 1. The Thebes, Hermann, Chester, and St. 

Charles gauging stations began their periods of 

record in 1982, 2009, 1982, and 2005, respectively. 

The period of record ended in 2017 for Thebes and 

Chester, and in 2008 for St. Charles. The Hermann 

station, located on the Missouri River, is currently 

continuing to provide daily SSC data.

Methods

Landsat Data Processing. Landsat T1 band surface 

re昀氀ectance values for blue, red, green, and NIR 
bands were used as independent variables in the 

regression model development. Surface re昀氀ectance 
values were obtained from delineated sampling 

areas at the four USGS gauge station locations. 

The rectangular sampling areas were 100 m wide 

by 330 m long. In MATLAB, each Landsat image 

was imported using an original MATLAB code, 

and the sampling area was delineated. The mean 

surface re昀氀ectance and standard deviation were 
calculated for each re昀氀ectance band of interest 
(green, blue, red, and NIR) within the sampling 

area. 
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The following chronological 昀椀lters were used 
on each Landsat image to generate the 昀椀nal 
Landsat surface re昀氀ectance dataset: collection tier 
昀椀lter, pixel quality 昀椀lter, blue band mean surface 
re昀氀ectance 昀椀lter (removes images with cirrus 
cloud coverage in the sample area), and surface 

re昀氀ectance standard deviation 昀椀lter (removes 
images with vessels in the sampling area). The 

collection tier 昀椀lter only allows T1 Landsat 
images to be used, and the pixel quality 昀椀lter 
only allows pixels to be used if they are de昀椀ned 
as “low cloud con昀椀dence”. The blue-band mean 
surface re昀氀ectance 昀椀lter was then used to identify 
and remove images with values higher than 4.5% 

for Landsat 8 OLI/TIRS images, and 6.5% for 

Landsat 7 ETM+ and Landsat 4-5 TM images. 

Table 1. Summary of development group and validation group USGS water quality gauge stations used in the 

development of the regression model.

Group
USGS Gauge Station

(Location - Gauge No.)
Begin Date End Date

------- No. of Data Points -------

L8

OLI/TIRS

L7

ETM+

L4-5

TM

Development
Thebes, IL – 07022000

Mississippi River
1982 2017 15 122 151

Development
Hermann, MO – 06934500

Missouri River
2009 2017 22 41 17

Validation
Chester, IL – 07020500

Mississippi River
1982 n/a 21 95 70

Validation
St. Charles, MO – 06935965

Missouri River
2005 2008 0 14 13

Figure 1. USGS gauge station locations used in regression equation analysis.
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Lastly, the surface re昀氀ectance standard derivation 
昀椀lter identi昀椀ed and removed images with a surface 
re昀氀ectance standard deviation for any band greater 
than 0.5%. Details of the development of the 

blue-band and standard deviation 昀椀lter methods 
are provided in Pereira et al. (2018). These steps 

ensured a high quality of Landsat data used in the 

development of the models.

Composite Dataset. The complete 昀椀nal dataset 
consisted of USGS daily SSC data and mean surface 

re昀氀ectance for the blue, green, red, and NIR bands. 
Each Landsat image product is representative of 

one date, and therefore dates in the Landsat dataset 

had to be matched to a date with a USGS SSC daily 

record. Each data point in the composite dataset is, 

therefore, representative of one date where there is 

both Landsat data and USGS data available. The 

temporal range of each 昀椀nal dataset varied among 
Landsat sensors. A summary of the Landsat data 

is provided in Table 1. Landsat 4-5 TM used data 

from almost 29 years, with a date range of January 
1983 to November 2011; Landsat 7 ETM+ used 

data from nearly 18 years, with a date range of 

August 1999 to July 2017; and Landsat 8 OLI/
TIRS used data from almost four and a half years, 

with a date range of March 2013 to July 2017.
Regression Analysis. The following power equation 

form was used for developing the regression model:

SSC = αX
1

β1X
2

β2X
3

β3 + ε                   (1)

where SSC is predicted in mgL-1, α is the regression 

coe昀케cient, ε is a constant term, X
1
, X

2
,
 
and

 
X

3
 are 

band re昀氀ectance ratios Blue:NIR, Green:NIR, 
and Red:NIR, respectively, and β

1
, β

2
, and β

3
 are 

exponents of band re昀氀ectance ratios X
1
,
 
X

2
,
 
and

 

X
3
, respectively. The least-squares 昀椀tting method 

was used to determine the optimal exponents 

and coe昀케cients for Equation (1) for each of the 
regressions (i.e., Landsat 4/5 TM, Landsat 7 

ETM+, and Landsat 8 OLI/TIRS).

For regression model development, the dataset 

was split into a development group (Thebes and 

Hermann) and a validation group (Chester and St. 

Charles). Regression coe昀케cients and exponents 
were calibrated using data from the development 

group, and data from the validation group were 

used to independently assess the performance of 

the regression model. Splitting the development 

and validation datasets by location provided the 

best ability to assess the regional transferability of 

the regression models.

The St. Charles gauge station was not used in the 

validation group for Landsat 8 OLI/TIRS regression 

analysis because the gauge stopped reporting SSC 

data in 2008, before Landsat 8 OLI/TIRS was 

launched. Pereira et al. (2018) also included the 

St. Joseph gauge station in the validation group; 
however, when performing regression analyses, 

data from the St. Joseph station did not 昀椀t the 
regression trends for all Landsat sensors. Although 

St. Joseph is also on the Missouri River, the station 
is located 563 river kilometers upstream of the 

Herman station on the Missouri River. This 昀椀nding 
re昀氀ects the signi昀椀cance of spatial transferability on 
re昀氀ectance-SSC empirical relationships.

Results and Discussion

A comparison between surface re昀氀ectance in 
visible and NIR Landsat bands and USGS daily 

SSC data showed that surface re昀氀ectance increases 
with increasing measured SSC. The peak surface 

re昀氀ectance within Landsat 8 OLI/TIRS visible and 
NIR bands alternated between the green (0.533 

to 0.590 µm) and red (0.636 to 0.673 µm) bands 
for SSC values less than 155 mgL-1. For SSC 

values greater than 155 mgL-1, the peak re昀氀ectance 
switched to the red band. Landsat 7 ETM+ and 

Landsat 4-5 TM surface re昀氀ectance had peak 
re昀氀ectance in the green band (0.52 to 0.60 µm) 
when the SSC value was less than 140 mgL-1. 

Peak re昀氀ectance alternated between green and 
red (0.63 to 0.69 µm) bands when the SSC value 
was between 140 to 160 mgL-1, and at SSC values 

greater than 160 mgL-1 the peak was sustained in 

the red band. Pereira et al. (2018) show an example 

of the surface re昀氀ectance spectrum for Landsat 7 
ETM+ and Landsat 4-5 TM.

Spectral sensitivity in Landsat bands was 

consistent when comparing Mississippi and 

Missouri River stations. The Mississippi River 

at Hermann and the Missouri River at Thebes 

showed similar spectral shapes (Figure 2). Lower 

SSC demonstrated peak re昀氀ectance in the green 
and red bands for both Hermann and Thebes. 

Concentrations higher than 155 mgL-1 had peak 

re昀氀ectance in the red band consistently for both 
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Hermann and Thebes, as well. This 昀椀nding shows 
consistency in spectral sensitivity with spatial 

variability.

The calibrated re昀氀ectance-SSC regression 
models are provided in Table 2, and comparisons 

of observed versus predicted SSC values for the 

development and validation groups are shown 

in Figures 3 and 4, respectively. The regression 

exponents for all three models indicate the highest 

correlations with the green to NIR band ratio. 

The red to NIR ratio also had a relatively large 

exponent compared to the exponents for the blue 

to NIR band ratios. A summary of the statistical 

performance of the three regression models is 

shown in Table 3. For each regression model, the 

coe昀케cient of determination (R2) and the root mean 

square error (RMSE) statistics are reported for 

the development group, validation group, and the 

entire dataset.

For Landsat 4-5 TM, the development and 

validation groups included 168 and 83 records, 

respectively. The Landsat 4-5 TM regression model 

had development and validation R2 values of 0.70 

and 0.75, respectively. The increase in R2 between 

the development and validation groups indicates 

that the regression model is not over昀椀tting the 
development data and that the model is regionally 

transferable.
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Figure 1. Comparison of Spectral Sensitivity for Mississippi and Missouri Rivers at similar 
Measured SSC values.  
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Figure 2. Comparison of spectral sensitivity for Mississippi and Missouri Rivers at similar SSC values.

Table 2. Re昀氀ectance-SSC empirical relationships for Landsat 8 OLI/TIRS, 7 ETM+, and 4-5 TM.

Landsat Sensor Re昀氀ectance-SSC Empirical Relationship

8 OLI/TIRS  

7 ETM+

4-5 TM

Note. For Landsat 8 OLI/TIRS, b2, b3, b4, and b5 are blue, green, red, and NIR band surface re昀氀ectance, respectively; 
and for Landsat 7 ETM+ and 4-5 TM, b1, b2, b3, and b4 are blue, green, red, and NIR band surface re昀氀ectance, 
respectively.

SSC (mgL-1) = 159.9
b2

b5

-0.1337

( ) b3

b5

-5.182
b4

b5

3.663

+ 87.67( ) ( )

SSC (mgL-1) = 111.3
b1

b4

-0.2684
b2

b4

-6.033
b3

b4

5.031

+ 63.84( ) ( ) ( )

SSC (mgL-1) = 74.80
b1

b4

-1.387
b2

b4

-4.639
b3

b4

4.227

+ 80.68( ) ( ) ( )
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For Landsat 7 ETM+, the development and 

validation groups included 163 and 109 records, 

respectively. The Landsat 7 ETM+ regression 

model had development and validation R2 values 

of 0.74 and 0.71, respectively. Similar to the 

Landsat 4-5 TM regression, the minimal di昀昀erence 
between the development and validation group R2 

values indicates a lack of model over昀椀tting and 
regional transferability.

For Landsat 8 OLI/TIRS, the development and 

validation groups included 37 and 21 records, 

respectively. The Landsat 8 OLI/TIRS dataset 

included a total of 58 records which is 23% and 

21% of the number of Landsat 4-5 TM and Landsat 

7 ETM+ records, respectively. The Landsat 8 OLI/

TIRS regression model had development and 

validation R2 values of 0.95 and 0.72, respectively. 

Figure 3. Development group relationship between predicted SSC and observed SSC for (a) Landsat 8 OLI/TIRS, (b) 

Landsat 7 ETM+, and (c) Landsat 4-5 TM.
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Figure 2. Development Group Empirical Relationship between Predicted SSC and Measured 
SSC for (a) Landsat 8 (b) Landsat 7 ETM+ and (c) Landsat 4-5 TM. 
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Table 3. Summary of R2 and RMSE for the Re昀氀ectance-
SSC regression models.

8 OLI 

SSC

7 ETM+  

SSC

4-5 TM  

SSC

Range (mgL-1) 49-963 41-961 44-863

No. of Samples 58 272 251

R2

Dev
0.95 0.74 0.70

R2

Val
0.72 0.71 0.75

R2

All
0.87 0.73 0.72

RMSE
Dev

37 82 85

RMSE
Val

89 85 80

RMSE
All

61 83 83
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The high development R2 value is a strong 

indication of the potential for the Landsat 8 OLI/

TIRS sensor to predict SSC; however, the notably 

lower validation R2 value suggests that the model 

is over昀椀tting and that more records are needed to 
develop a robust regression model.

The power-regression form of the re昀氀ectance-
SSC model has several advantages over the model 

provided by Pereira et al. (2018):

• Power-regression model does not allow for 

any negative estimated SSC values which 

were observed during the application of the 

Pereira et al. (2018) model; 

• Approximately two additional years of 

period of record were used in the combined 

development and validation dataset;

• The revised 昀椀ltering methodology is 
consistent with the updated Landsat product 

formats (i.e., Tier quality classi昀椀cations); and
• R2 values (0.62 to 0.72 for the validation 

Figure 4. Validation group relationship between predicted SSC and observed SSC for (a) Landsat 8 OLI/TIRS, (b) 

Landsat 7 ETM+, and (c) Landsat 4-5 TM.
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Figure 3. Validation Group Empirical Relationship between Predicted SSC and Measured 
SSC for (a) Landsat 8 OLI/TIRS. (b) Landsat 7 ETM+ & (c) Landsat 4-5 TM 
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group) were notably improved for the 

Landsat 8 model (negligible di昀昀erences in 
Landsat 4/5 and Landsat 7 models) likely 

due to the increased number of data points 

used in the model development.

Re昀氀ectance-SSC Regression 
Applications

Con昀氀uence Mixing 
The Landsat 8 OLI/TIRS regression model 

was applied at the con昀氀uence of the Mississippi 
and Missouri Rivers to analyze the di昀昀erence 
in SSC between the two rivers and evaluate the 

downstream mixing length. The Landsat real-

color image of the Mississippi–Missouri River 

con昀氀uence from September 12, 2016, shown 
in Figure 5, illustrates a visible color di昀昀erence 
between the 昀氀ow from the Mississippi River and 
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1087 cms (observed at St. Louis Gage Station 

0701000), which was signi昀椀cantly lower than the 
discharges on the other dates, which ranged from 

5,692 cms to 7,108 cms. This reduced 昀氀ow rate is 
likely the cause of the lack of increased SSC in the 

area of concern. 

Using the re昀氀ectance-SSC regression models, 
an automated algorithm could be developed to 

process the entire reach of the MMR and quantify 

local regions of increased SSC. Applying this 

automated method with images from several 

dates could then be used to identify zones with 

consistently higher SSC values. This application 

could be a powerful tool for environmentalists or 

government agencies to ensure that regulations are 

being properly followed. 

Analysis across Large River Reaches

The three regression models were used to 

investigate pro昀椀le distributions of SSC along the 
main channel of the Mississippi River. Landsat-

predicted SSC values were obtained from 33,000-

m2 sampling areas along the MMR every 16 river 

the Missouri River. On this date, discharges in 

the Mississippi River and Missouri River were 

9,940 cubic meters per second (cms) and 4,191 

cms, respectively, with corresponding exceedance 

probabilities of 15% and 25%, respectively. The 

SSC distribution computed from the Landsat 8 

OLI/TIRS regression model is also shown in Figure 

5. The computed SSC values for the Mississippi 

River and Missouri River were 700 mgL-1 and 200 

mgL-1, respectively. For this image, the computed 

and visible mixing divide extended approximately 

161 river kilometers downstream.

Point-Source Pollution 

Along the MMR, areas of abnormally high SSC 

can be identi昀椀ed and quanti昀椀ed using re昀氀ectance-
SSC regression models. Figure 6 shows an area 

of high SSC at the same location on four di昀昀erent 
dates between 2014 and 2017. The SSC data in 

Figure 6 were developed using the Landsat 8 OLI/

TIRS regression model. Figure 6-f shows the same 

point in 2013, but the area has no noticeably higher 

concentration. The discharge on the 2013 date was 

Figure 5. Mississippi–Missouri River con昀氀uence from Landsat 8 Surface Re昀氀ectance Image on September 12, 2016 
(a) Landsat Real Color Image and (b) Landsat-Predicted SSC Image.
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Figure 4. Mississippi – Missouri River Confluence from Landsat 8 surface reflectance image on 
September 12, 2016 (a) Landsat Real Color Image & (b) Landsat-Predicted SSC Image. 
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kilometers for the following dates: September 

29, 1993 (Landsat 4-5 TM); September 4, 2010 

(Landsat 7 ETM+); and November 13, 2015 

(Landsat 8 OLI/TIRS). These dates were selected 

to include a low, medium, and high discharge 

condition. The Mississippi River discharges on 

these dates, extracted from the St. Louis USGS 

Gage (07010000), were 19,539, 8,948, and 3,766 

cms, respectively, with corresponding exceedance 

probabilities of 1%, 19%, and 72%, respectively. 

The Missouri River discharges on these dates were 

13,168, 3,710, and 1,487 cms, respectively, with 

corresponding exceedance probabilities of 0.12%, 

21%, and 67%, respectively. 

Figure 6. High SSC point along the MMR showed on (a) Landsat Real Color Image - 09/12/2016, Landsat-Predicted 

SSC Image, (b) 09/12/2016, (c) 06/27/2017, (d) 08/25/2015, (e) 09/23/2014, and (f) 11/07/2013.
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Computed SSC values as a function of river 

kilometer are shown in Figure 7. The results show 

that SSC values generally increased with increasing 

downstream distance and increased with increasing 

water discharges. The September 29, 1993 data 

show a drastic spike downstream of the Missouri 

River con昀氀uence. This date occurred during the 
great Mississippi River and Missouri River 昀氀ood, 
which lasted from April to October 1993, and had 

disproportionally high-water discharges in the 

Missouri River relative to the Mississippi River.

Sediment Rating Curves 

The 昀椀nal demonstrated application of the 
re昀氀ectance-SSC regression models is the 
development of sediment rating curves for 

the following MMR tributaries: the Missouri, 

Meramec, Kaskaskia, and Big Muddy Rivers. Due 

to the 30-m resolution of Landsat imagery, only the 

tributaries that had a median channel width of 30 m 

or greater were used in this application. SSC data 

for each tributary were obtained using all available 

Landsat 4-5 TM, Landsat 7 TM+, and Landsat 8 

OLI/TIRS, the image 昀椀ltering techniques described 
in the Methods Section, and the re昀氀ectance-
SSC regression models. All sampling areas were 

33,000 m2 rectangular areas located immediately 

upstream of each con昀氀uence. The median channel 
width of each tributary varied; therefore, sample 

area dimensions for each tributary were as follows: 

100 m wide by 330 m long for the Missouri River, 

60 m wide by 550 m long for the Meramec and 

Kaskaskia, and 30 m wide by 1,100 m long for the 

Big Muddy River. Daily mean discharge data were 

taken from the gauge station that was nearest to 

each tributary’s con昀氀uence with the Mississippi 
River. The gauge station at Hermann, MO (Gauge 

No. 06924500) was used for the Missouri River; 

the gauge station at Eureka, MO (Gauge No. 

07019000) was used for the Meramec River; the 

gauge stations at Venedy, IL (Gauge No. 05594100) 

and Freeburg, IL (Gauge No. 05594800) were used 

for the Kaskaskia River; and the gauge station at 

Murphysboro, IL (Gauge No. 05599490) was 

used for the Big Muddy River. The least-squares 

method was used to 昀椀nd the best-昀椀t form of the 
rating curve equations for each site. The following 

non-linear, power-regression equation was used:

SSC = αQβ + ε                       (2)

where SSC is predicted in mgL-1, α is the regression 

coe昀케cient, Q is discharge in cubic feet per second, 

Figure 7. Graph showing SSC along the Middle-Mississippi River (Upper-Mississippi River from River Kilometer 

197 to 1) for di昀昀erent 昀氀ow frequencies.
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β is the power term for the discharge, and ε is the 

constant term. 

Observed versus predicted SSC plots for each 

site, along with the calibrated rating equations, 

are shown in Figure 8. The Missouri River had 

an R2 value of 0.433, the Meramec River had the 

highest rating curve R2 value of 0.747, Kaskaskia 

had an R2 value of 0.360, and the Big Muddy 

River had an R2 value of 0.519. Estimates of 

sediment yield based on rating-curve calculations 

will have greater errors than those obtained from 

direct measurements; however, a sediment rating 

curve can be valuable in the absence of direct 

measurements. Asselman (2000) stated that scatter 

about the rating curve regression line is caused 

by variations in sediment supply due to seasonal 

e昀昀ects, antecedent conditions in the river basin, 
and di昀昀erences in sediment availability at the 
beginning and the ending of a 昀氀ood, which are not 
accounted for in rating curves.

Summary and Conclusions

Re昀氀ectance-SSC regression models for the 

Figure 8. Sediment rating curves obtained from empirical relationship between Landsat predicted SSC and observed 

discharge for (a) Missouri River, (b) Meramec River, (c) Kaskaskia River, and (d) Big Muddy River.
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MMR and the LMOR were developed from 

Landsat measured surface re昀氀ectance and USGS 
SSC records. The calibrated re昀氀ectance-SSC 
models had validation R2 values of 0.72, 0.71, 

and 0.75 for Landsat 8 OLI/TIRS, Landsat 7 

ETM+, and Landsat 4-5 TM, respectively. Landsat 

satellites have been collecting data for 36 years, 

with a temporal resolution of 16 days. These 

re昀氀ectance-SSC relationships enable researchers 
to study spatial and temporal trends in SSC for 

dates of available Landsat data. 

Three applications of the re昀氀ectance-SSC 
regression models were demonstrated: 1) mixing at 

the Mississippi and Missouri River con昀氀uence, 2) 
point-source pollution, and 3) SSC changes along 

the entire MMR reach for a range of discharges. 

The following conclusions were made from these 

analyses:

Analysis of SSC distributions at the Mississippi 

and Missouri River con昀氀uence for September 
12, 2016, showed the mixing 昀椀eld extended 
approximately 161 kilometers downstream of the 

con昀氀uence.
Using the regression models, a point-source 

pollution location along the MMR was identi昀椀ed 
with elevated SSC values on dates in 昀椀ve di昀昀erent 
years. This type of application can be used to 

identify local areas with consistently elevated SSC 

that may be causing negative impacts on the MMR.

Longitudinal pro昀椀le distributions of SSC in 
the MMR for a range of 昀氀ow rates revealed that 
SSC values generally increased with increasing 

downstream distance and increased with increasing 

discharges.

The regression models were also used to 

develop sediment rating curves for the Missouri, 

Meramec, Kaskaskia, and Big Muddy Rivers. The 

R2 values for these rating curves were 0.433, 0.747, 

0.360, and 0.519, respectively. The Missouri River 

is monitored for SSC, but there are gaps in the 

period of record which can be supplemented with 

data derived from the sediment rating curves. The 

remaining three tributaries are unmonitored for 

SSC and the sediment rating curves can provide an 

estimate of the sediment load contributions from 

each tributary to the MMR. In future studies, the 

sediment rating curves could be used to create a 

sediment budget for the MMR.
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