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F
ecal indicator bacteria (FIB) such as 

Escherichia coli in freshwater waterbodies 

are frequently monitored to assess potential 

human health risk from pathogen contact in 

recreational waters. The State of Oklahoma and 

U.S. Environmental Protection Agency water 

quality standard criteria for FIB for primary body 

contact recreation (PBCR) in waterbodies is 

de昀椀ned as the geometric mean of 10 samples from 
the recreation season, May 1 to September 30, with 

an impairment threshold of 126 colony forming 

units (cfu) per 100 mL for E. coli (OWRB 2017). 

Thresholds were derived from epidemiology 

studies in freshwater and marine swimming beach 

areas in lakes and oceans where subjects contacted 

potential contaminated water and incidents of 

gastrointestinal illness occurred (USEPA 1986; 

2012). 

Escherichia coli has been studied extensively for 

fecal source tracking, pathogenic strains, waterbody 

conditions, and other associated research questions 

related to human health risk and fecal water quality 

indicators for PBCR (Gitter et al. 2020). However, 

water quality standards provide limited guidance 

of how samples should be collected during the 

recreation season. State agencies and other entities 

that collect samples and make assessments often 

develop their own sampling metrics, but are 

not standardized to sampling protocols (USEPA 

2012). The U.S. Environmental Protection Agency 

and others recognize that temporal and spatial 

factors could play signi昀椀cant roles in bacteria 
concentrations within a stream (USEPA 2010; 

Muirhead and Meenken 2018). Recent studies 

found that sampling location and frequency 

were signi昀椀cant factors when developing a 
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Abstract: Fecal indicator bacteria, Escherichia coli, for primary body contact recreation (PBCR) in 

Oklahoma waterbodies, is de昀椀ned as the geometric mean of 10 samples from the recreation season, May 1 
to September 30, with an impairment threshold of 126 colony forming units (cfu) per 100 mL. However, the 

water quality standards provide limited guidance on spatiotemporal and environmental factors that could 

in昀氀uence samples collected and analyzed. In this study, two stream cross sections under base昀氀ow conditions 
in a central Oklahoma urban perennial stream, Spring Creek, were densely sampled to investigate temporal 

and spatial variability of E. coli concentrations and water quality parameters across the stream channel. 

Water quality parameters (speci昀椀c conductivity, temperature, dissolved oxygen, pH, turbidity, and total 
suspended solids (TSS)), stream discharge, and bacteria samples were collected simultaneously at equal 

intervals across the two cross sections in the morning and afternoon during one summer day with sunny, 

dry, and hot weather conditions. Results indicate a signi昀椀cant di昀昀erence between time-of-day samples and 
water quality parameters and E. coli concentrations. Strong correlations between temperature, dissolved 

oxygen, and time versus E. coli concentrations were observed, while location, turbidity, and TSS were 

not signi昀椀cant or correlated to measured values. Furthermore, E. coli concentrations were highly variable 

spatially across each stream cross section, regardless of time of day or location. Results from this study 

provide an initial indication that stream water quality, spatial cross section sample location, and diurnal 

variations may be in昀氀uencing factors on bacteria concentrations.
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monitoring plan to obtain representative samples 

for the evaluation of potential fecal contamination 

(Crosby et al. 2019; Stocker et al. 2019). In 

addition, previous research has indicated that 

sample type and technique when monitoring a 

stream should be considered to reduce uncertainty 

in analyses (Harmel et al. 2016). Gregory et 

al. (2019) determined there was a signi昀椀cant 
di昀昀erence between stream昀氀ow thresholds (i.e., 
base昀氀ow, 昀氀oods) and E. coli concentrations, and 

indicated that speci昀椀c hydrologic factors may 
provide stronger relationships to FIB stream 

concentrations and associated human health 

risk. Therefore, given the number of temporal 

and spatial factors within a stream sample reach, 

determining sample representativeness could be an 

important consideration for waterbody impairment 

designation.

Stream characteristics and environmental 

conditions have been shown to in昀氀uence FIB and 
have been used to develop relationships between 

parameters and FIB concentrations (Dwivedi et 

al. 2013). Particularly, suspended solids, turbidity, 

water temperature, and habitat have previously 

been used as predictors for E. coli densities 

(Desai and Rifai 2010; Petersen and Hubbart 

2020). Others have found signi昀椀cant relationships 
between nutrients, turbidity, and FIB in streams 

that can be used to predict bacteria concentrations 

(Christensen et al. 2002). Furthermore, discharge 

and precipitation, along with turbidity, have 

been found to strongly correlate with E. coli 

concentrations in streams (Hamilton and Lu昀昀man 
2009). Comparison of stream reaches within 

similar land use segments has been explored with 

di昀昀erentiating results for variable fecal indicator 
concentrations and environmental conditions 

(Stocker et al. 2016). Results indicated that there 

were signi昀椀cant di昀昀erences between stream 
sampling locations, and that more research is 

needed to understand stream dynamics that may 

a昀昀ect FIB. Diurnal variation and sunlight are also 
important considerations for evaluating FIB in 

streams and rivers (Desai and Rifai 2013). Previous 

research has indicated that FIB concentrations in 

waterbodies are cyclical, with decay shown during 

high sunlight periods and increases in bacteria 

concentrations during low light periods (Whitman 

et al. 2004; Schultz-Fademrecht et al. 2008). 

Hydrologic extremes such as 昀氀oods and droughts 
can increase variability within stream reaches 

due to external bacterial inputs from stormwater 

conveyance, wastewater over昀氀ows, and non-point 
sources (Vogel et al. 2009; McKergow and Davies-

Colley 2010; Sanders et al. 2013; Verhougstraete 

et al. 2015; Rochelle-Newall et al. 2016; Stocker 

et al. 2018). Furthermore, Piorkowski et al. (2014) 

showed a variable spatial distribution of FIB in 

stream sediments under di昀昀erent 昀氀ow conditions 
and sampling location. Sediment type and stream 

habitats have also shown to be E. coli reservoirs 

within streams (Brinkmeyer et al. 2015; Devane et 

al. 2020). Stream bed sediments have the potential 

to provide a consistent source of resuspended 

FIB in the stream water column due to dynamic 

hydrologic conditions and can create variable 

sampling conditions (Jamieson et al. 2005; Haller 
et al. 2009; Bradshaw et al. 2016).

While environmental and hydrologic conditions 

have been extensively studied to develop 

relationships between these factors and E. coli 

within streams and rivers, limited information 

exists to understand the variability of bacteria 

concentrations within the longitudinal and cross-

section pro昀椀les of streams. The objectives of this 
study were to 1) investigate spatial and temporal 

variability in two stream cross sections, 2) evaluate 

physical and chemical factors for correlations 

between variables and evaluate statistical trends, 

Research Implications

• Sample location and time can in昀氀uence E. 

coli concentrations in streams and rivers.

• Environmental parameters can be used to 

develop relationships to predict bacteria 

concentrations.

• Monitoring approaches should consider 

sampling location, time, and other 

environmental conditions when sampling for 

fecal indicator bacteria.

• An improved understanding on how, 

when, where, and why to sample fecal 

indicator bacteria is needed to ensure 

representativeness of stream conditions for 

impairment determination for recreational 

waters.
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and 3) provide preliminary information for 

future research targeting speci昀椀c environmental 
and spatiotemporal factors that may in昀氀uence 
bacteria concentrations in streams and rivers, and 

ultimately, drive impairment criteria for water 

quality monitoring.

Methods

Two stream cross sections in a central 

Oklahoma urban perennial stream, Spring Creek, 

under base昀氀ow conditions (less than 2.54 mm 
precipitation in previous seven days) were densely 

sampled during a seasonally average dry and 

hot, central Oklahoma summer day (Figure 1). 

Additionally, in-situ water quality parameters 

were collected across the stream channel sections 

at sampling points. Spring Creek is located in 

northwest Oklahoma City, OK at 35° 36’ 18.7” N 
and -97° 36’ 29.3” W, and the site location has an 
approximate drainage area of 30 km2 as calculated 

in StreamStats (Smith and Esralew 2010). The 

land use category of the watershed is highly urban 

(>90%) with silty clay to clay loam soil types 

(USDA NRCS 2023). Potential bacteria inputs 

are primarily from non-point sources from urban 

runo昀昀, as no septic tanks, wastewater discharges, 
or agriculture are located in the watershed. Stream 

cross sections were evaluated at two daily time 

periods, morning (0800) and afternoon (1500), 

at two locations. The two measured cross section 

stream feature morphologies were a pool (upstream) 

and a run (downstream) and were separated by 200 

m of a series of ri昀툀es, glides, pools, and runs. The 
upstream cross section had a width of 6.7 m and 

downstream location had a cross section width of 

7.3 m. 

Factors investigated included E. coli 

concentration, dissolved oxygen (DO), speci昀椀c 
conductivity (SC), total suspended solids (TSS), 

turbidity, water temperature (T), stream velocity 

and 昀氀ow, channel depth, stream location and 
cross section, and time. Water quality samples 

and parameters were collected across the cross 

section simultaneously by our sampling team for 

evaluation of spatial variability (Figure 2). Grab 

samples were collected at evenly spaced 1.2 m 

cross section locations (minimum of six sampling 

locations) at mid-depth in sterile 1 L polypropylene 

bottles and split into respective subsamples 

for bacteria (E. coli), water quality parameters 

(turbidity, pH, conductivity), and sediment 

(TSS) analyses (Figure 2). Sampling protocols 

adhered to the U.S. Geological Survey sampling 

methods (USGS 2014). Discharge measurements 

were collected using a Sontek Flowtracker2® 

handheld-ADV (acoustic Doppler velocimeter) at 

each cross section, following collection of water 

quality samples. At each time period, samples 

were 昀椀rst collected at the downstream location to 

Figure 1. Site sampling locations at Spring Creek in central 

Oklahoma.

Figure 2. Cross-section water quality sampling at 

the “run” location at Spring Creek.
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minimize disturbance of the water column from the 

upstream location. E. coli concentrations in water 

were analyzed using IDEXX Quantitray Colilert 

(SM9223-B) to determine most probable number 

(MPN) per 100 ml (Baird and Bridgewater 2017). 

TSS analyses were completed using SM 2540-

D and turbidity was measured using a Hach® 

portable turbidity meter. Water temperature, pH, 

DO, and SC were measured using a ThermoFisher 

Scienti昀椀c Orion Star A329 multiparameter meter.

Data Analysis

Data were analyzed using Microsoft Excel® 

and R statistical software. Di昀昀erences in means 
were evaluated using a two-sample t-test with 

unequal variances. A Pearson correlation test 

with a two-sample t-test with unequal variances 

was performed to determine signi昀椀cant linear 
relationships between variables. An F-test was 

used to evaluate variance of water quality data 

collected from each stream section. All statistical 

昀椀gures were generated using R and Excel®.

Results and Discussion

Stream 昀氀ow characteristics were measured at 
both the morning and afternoon sampling periods. 

Stream locations had mean column depths of 0.35 m 

at the pool and 0.15 m at the run. Discharge during 

the morning and afternoon periods (measurement 

was within ± 0.01 m3s-1 at both the upstream and 

downstream locations) was 0.08 m3s-1 and 0.04 

m3s-1, respectively, which is within range of the 

estimated 50% 昀氀ow-duration for Spring Creek in 
July (0.05 m3s-1) (Smith and Esralew 2010). The 

drainage area is characterized as highly urban, silty 

clay soils (hydrologic soil group D), which could 

increase the potential for anthropogenic in昀氀uences 
and explain the higher discharge in the morning 

period when lawn irrigation is most common. No 

measurable precipitation (>2.54 mm) was recorded 

at the nearest Oklahoma City East Mesonet station 

for the preceding seven days (Brock et al. 1995; 

McPherson et al. 2007). 

From a two-sample t-test with unequal 

variances, E. coli concentrations between the 

upstream (pool) and downstream (run) were not 

signi昀椀cantly di昀昀erent between the means for each 
location for all time periods (p=0.23). However, 

a signi昀椀cant di昀昀erence (p<0.001) between time 
periods (morning and afternoon) was shown 

between each location for E. coli densities. 

The geometric mean in the morning for E. coli 

was 664 MPN/100 ml (SD ± 116) and was 137 

MPN/100 ml (SD ± 108) in the afternoon. Results 

from a t-test comparing Pearson correlation 

coe昀케cients between factors indicate that time, 
DO, SC, and T were signi昀椀cant (p<0.05) for E. coli 

concentrations. Furthermore, DO was signi昀椀cantly 
higher (p<0.01) in the morning than afternoon and 

displayed a strong positive correlation of 0.69 to 

E. coli concentrations. Conversely, a very strong 

negative correlation (-0.93) of T was shown and 

a strong positive relationship with SC (0.78) was 

found versus E. coli concentrations (p<0.01). The 

mean DO and T for both locations was 9.05 mg/L 

(SD ± 0.12) and 26.63°C in the morning, and 7.02 

mg/L (SD ± 0.42) and 29.14°C in the afternoon. 

When comparing SC to E. coli concentrations, a 

signi昀椀cant di昀昀erence was statistically determined, 
however, the means of SC for the morning and 

afternoon were 1167 (SD ± 1.72) and 1171 µS/
cm (SD ± 4.59), respectively, which provides 

limited inference for interpretation given the 

minute di昀昀erence between time points. However, 
the 昀氀ow was a factor of two higher in the morning 
than in the afternoon and could suggest that more 

昀氀ow slightly altered the water chemistry through 
dilution. Signi昀椀cant di昀昀erences (p<0.01) were 
found from the Pearson correlation coe昀케cient t-test 
when comparing E. coli concentrations from both 

sampling locations to water quality parameters 

(DO, T), water column depth, and time. However, 

no signi昀椀cant di昀昀erences were shown (p>0.05) for 
TSS, turbidity, and stream velocity. Boxplots of 

water quality parameters are shown in Figure 3.

Previous research has indicated that sediment 

parameters are strong predictors for FIB sampling 

(Stocker et al. 2019). However, our results from 

the Pearson correlation indicated high variability 

and no signi昀椀cant relationship between turbidity, 
TSS, and E. coli for each cross section and location. 

Stream cross section versus TSS is presented in 

Figure 4, and visually demonstrates the variability 

of suspended sediments at time points and cross 

section location. Stream cross sections at both 

locations were evaluated using a two-sample F-test 

to determine if variability exists across the lateral 
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Figure 3. Standard box plots of a) Water Temperature, b) Dissolved Oxygen (DO), c) Speci昀椀c Conductance (SC), and 
d) Turbidity, showing the median (line in box), lower (Q1) and upper (Q3) (T bars outside of box) and outlier values 

(points) grouped by sample time at each of the two Spring Creek sampling locations.

Figure 4. Combination of plot of morning and afternoon total suspended solids (TSS) at the pool and run cross sections. 

Cross section depth for each location is indicated by the dashed lines. Standard error is represented by the error bars.
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pro昀椀le of the stream for E. coli concentrations. 

Results show signi昀椀cant high variability between 
the pool and run locations (p<0.01) at both times, 

where the standard deviation was approximately 

a factor of three lower in the run location than 

the pool location. No signi昀椀cant di昀昀erence in 
variability was found when comparing two time 

periods for the pool location (p=0.44), whereas 

a signi昀椀cant di昀昀erence was indicated for the 
run location (p=0.038) when comparing two 

di昀昀erent time periods. E. coli stream cross section 

concentrations for two time periods and locations 

are displayed in Figure 5.

While sediment is generally highly correlated 

to E. coli concentrations, variability between 

sample times has been shown to skew results while 

monitoring (Crosby et al. 2019). Results from our 

cross-section study comparing stream location 

indicate that variability of FIB concentrations, 

speci昀椀cally E. coli, can be reduced if samples are 

collected in a well-mixed stream reach, such as from 

the stream run location, with consideration that 

variability can occur across the cross section even 

when hydrologic conditions and other factors are 

considered. Others have indicated that composite 

samples may be a better representation of stream 

water quality parameters when compared to other 

sample types (e.g., grab samples) (Harmel et al. 

2016). In our preliminary research, water quality 

parameters (DO, T, and SC) were better predictors 

for E. coli than sediment, which may be related to 

time-of-day conditions within the stream since T 

can in昀氀uence DO, SC, and E. coli concentrations. 

Diurnal variation and percent sunlight at each 

location were not measured for this study, but when 

comparing to previous research, this variable may 

be an important consideration of where and when 

to sample. More research is needed in various 

stream types, geographic locations, and spatial 

and temporal resolutions to validate the variability 

within stream cross sections and longitudinal 

segments. 

Conclusions

Sampling FIB for water quality impairment 

determination is important to evaluate recreational 

waterbodies for potential pathogen presence that 

can a昀昀ect human health. However, the water 
quality standards do not provide detailed guidance 

of the spatial and temporal distribution of water 

samples at a point of interest in a waterbody. Our 

research provides initial evidence that sampling 

methods should be investigated further to 

Figure 5. Escherichia coli concentrations at two cross section locations (pool and run) at the Spring Creek study site 

for two time periods, morning (0800 and 0815) and afternoon (1500 and 1515). Standard error is represented by the 

error bars.
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properly evaluate streams for water quality fecal 

indicators. We demonstrated that high spatial 

variability of bacteria concentrations across both 

stream reaches was shown regardless of time of 

day or other waterbody conditions. Furthermore, 

basic water quality parameters (DO, T, and SC), 

time of day, and stream section locations may be 

useful predictors when selecting a representative 

location. This proof-of-concept study indicates that 

more emphasis should be placed on selecting site 

conditions that are representative (e.g., sampling 

reach) of the waterbody being sampled, with 

spatial and temporal considerations. Furthermore, 

other water quality and hydrologic factors could 

potentially be used to target stream reaches that 

are impaired and improve sampling protocols by 

understanding stream dynamics to obtain quality 

samples. Future work in this research area is 

needed to improve the water science community’s 

approaches to enhance our understanding of 

streams and rivers and use our resources e昀昀ectively.
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