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H
uman activities in watersheds in昀氀uence 
the quality of adjacent and downstream 

water resources for bene昀椀cial uses like 
drinking water, aquatic life habitat, and recreation. 

At both global and local scales, greater extent of 

anthropogenic land use-land cover (LULC) types 

like urban and agriculture in watersheds is correlated 

with greater levels of nutrients, sediments, and salts 

in connected water bodies (Giovanetti et al. 2013; 

Lintern et al. 2017). Point sources, such as industrial 

or municipal wastewater discharges, also play a 

role, though these inputs are more easily quanti昀椀ed, 
regulated, and mitigated compared to non-point 

sources (Haggard 2010; Scott et al. 2011).

The water quality e昀昀ects of human activities in 
watersheds extend beyond water chemistry, with in-

stream and riparian habitat quality often becoming 

less stable and complex as watershed disturbance 

increases, supporting fewer sensitive species 

(White and Walsh 2020). The combined e昀昀ects of 
water chemistry changes and habitat quality loss 

compound in the biological community response, 

with shifts to increased densities of individuals 

from pollution-tolerant taxa and overall reduced 

taxonomic richness (Xu et al. 2013). 

It is increasingly recognized that a broad array 

of stakeholders must be mobilized to e昀昀ectively 
address the e昀昀ects of human activities on water 
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Abstract: The watershed group H
2
Ozarks founded the StreamSmart Citizen Science Program to establish 

baseline and long-term water quality data for the Upper White River Basin, Arkansas. StreamSmart volunteers 

collect water samples and conduct habitat and macroinvertebrate community assessments at >20 sites 

across a land use-land cover (LULC) gradient. Since 2020, H
2
Ozarks has adaptively assessed the program 

to ensure that the investment in water quality data meets core goals, with particular interest in planning tools 

and aligning expectations of volunteer e昀昀ort with the level of training and support. Study objectives were to 
use StreamSmart data to 1) facilitate understanding of water quality response to stressors in the basin using 

a range of methods (Spearman rank correlation, non-parametric changepoint analysis, and categorical and 

regression tree analysis) and 2) explore implications for program design and watershed planning. Water 

chemistry-LULC relationships were in-line with prior regional studies, as well as global patterns. Detected 

thresholds and hierarchy provide potential targets for managing LULC change to protect water quality, but 

further analysis is warranted to re昀椀ne these relationships. Macroinvertebrate stressor-response was most 
detectable for sensitive and less sensitive taxa and for habitat index components, suggesting potential to 

streamline these programmatic elements. Study 昀椀ndings for StreamSmart should also be informative for 
other small-scale volunteer monitoring programs with limited resources, but which actively evaluate the 

types of data and program activities that yield a maximum scienti昀椀c return on investment.
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quality (USEPA 2005). Watershed management 

planning is a stakeholder-driven process that takes 

a holistic approach to water quality protection and 

restoration in a speci昀椀c watershed (USEPA 2008). 
Water quality monitoring is a core component 

of a watershed management plan, both to 

establish baseline conditions and to collect real-

time information as watersheds evolve. Citizen 

science programs have an established history 

in water resources research and management, 

including water quality monitoring (Buytaert et 

al. 2014). These programs can be an entry point 

for stakeholders to community involvement and 

education around watershed management (Savan 

et al. 2003; Storey et al. 2016), and have been 

shown to produce water quality data of comparable 

quality to professionally collected datasets (Hoyer 

and Can昀椀eld 2021).
In Northwest Arkansas, the watershed group 

H
2
Ozarks (formerly Ozark Water Watch) seeks to 

increase stakeholder awareness of water quality 

and watershed function by engaging the public 

in the StreamSmart Citizen Science Program. 

StreamSmart leverages volunteer monitoring to 

establish a baseline water quality database for the 

Upper White River Basin. The volunteers collect 

water samples and assess habitat quality and the 

aquatic macroinvertebrate community at more 

than 20 sites. The Upper White River Basin is 

rapidly urbanizing (NWARPC 2016) and is also 

the source water area for Beaver Lake, which 

provides drinking water for ~1 in 6 Arkansans. 

StreamSmart complements monitoring by other 

entities by providing more granular coverage of 

the basin. 

Since 2020, StreamSmart has been adaptively 

assessing the program to ensure that the investment 

in water quality data meets core goals. The primary 

goal is to inform stakeholders about current water 

quality and any potential changes in the basin. 

But, H
2
Ozarks and its partners, the Beaver Water 

District’s source water protection program and 

the Beaver Watershed Alliance, also want to use 

StreamSmart data to inform nutrient reduction 

strategies, such as siting best management 

practices. Further, program changes have focused 

on making sure the expected volunteer time and 

e昀昀ort investment matches the level of support that 
the group can provide. Training is an essential 

component of citizen science program success 

(Nerbonne and Vondracek 2003; Lewandoski and 

Specht 2015; San Llorente Capdevila et al. 2020), 

and the current StreamSmart training and sta昀케ng 
levels may not be su昀케cient for reliably generating 
complex data such as macroinvertebrate or 

habitat assessments (Fore et al. 2001). Volunteer 

interests and desired time investment are also 

considerations. Future changes may include 

scaling back macroinvertebrate work, and habitat 

assessments have already been discontinued.

The Arkansas Water Resources Center has 

provided lab services funded through Section 

104(b) of the Water Resources Research Act of 1984 

and technical support of volunteer training since 

StreamSmart began. In this study, we conducted 

a comprehensive stressor-response analysis of the 

StreamSmart volunteer water quality monitoring 

database. The study objectives were to 1) facilitate 

understanding water quality response to stressors 

in the basin using a range of stressor-response 

methods and 2) explore potential implications 

of study 昀椀ndings for the StreamSmart program 
design and watershed planning. Study 昀椀ndings 

Research Implications

• StreamSmart water chemistry data 

responded to land use-land cover (LULC) 

gradients, most notably human development 

index thresholds and hierarchy that may 

provide useful targets for watershed 

planning.

• Highly predictive water chemistry-LULC 

relationships suggest that StreamSmart 

data can be combined with other datasets in 

knowledge “co-creation” around watershed 

management and planning.

• Macroinvertebrate and habitat stressor-

response relationships were most detectable 

when considering sensitive groups 

and habitat components, like epifaunal 

substrate/cover, ri昀툀e/bend frequency, and 
channel 昀氀ow status.

• Relationships between sensitive groups and 

habitat components may re昀氀ect volunteer 
biases, but also present an opportunity for 

StreamSmart to collect the same information 

with less volunteer time and e昀昀ort.
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for StreamSmart should also be informative for 

other volunteer monitoring programs of similar 

size, scale, and resource availability in evaluating, 

or re-evaluating, the types of data to collect for 

maximum return on investment.

Methods

Study Location and Site Characteristics

StreamSmart was founded in 2012 to 

monitor water quality in the Upper White 

River Basin (Figure 1). The basin is primarily 

forested (>60%), and pasture agriculture is the 

predominant anthropogenic LULC. However, 

rapid urbanization is also occurring, typically 

on prior pasture lands. StreamSmart volunteers 

have collected water samples, conducted habitat 

assessments, and collected information on 

aquatic macroinvertebrates at 23 sites since the 

program began (Table 1), with 14 sites currently 

active. StreamSmart selects and maintains core 

monitoring locations to encompass gradients of 

LULC types. Volunteers are required to attend a 

half-day comprehensive training covering best 
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Figure 1. Map of the study area, the Upper White River Basin located in Northwest Arkansas, showing distribution 

of land use-land cover (LULC) characteristics in the watershed (Dewitz and USGS 2021), as well as the locations of 

StreamSmart volunteer monitoring sites (2012 – present).
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practices for collecting water samples, kicking 

for macroinvertebrates, and habitat assessment 

terminology. The training includes a brief on-site 

demonstration by water quality professionals.

This analysis used data from 21 sites and 

focused on the period 2012 – 2020. Two sites were 

not included; site 110 was not established until 

2020, and site 308 has a point-source discharger 

in the watershed (City of Huntsville municipal 

wastewater treatment plant). Signals of point-

source pollution were expected to confound 

analysis, as it is recognized that non-point sources 

are dominant in the watershed, including channel 

erosion and runo昀昀 from farms, unpaved roads, and 
urban or urbanizing areas (Perez et al. 2015).

StreamSmart site sub-watershed areas and 

LULC data (MRLC 2018) were obtained from 

https://modelmywatershed.org/. Summary LULC 

categories were calculated as the percentage 

of each site’s sub-watershed area (Table 1). 

Agricultural land (%) was the sum of pasture/hay, 

grassland/herbaceous, and cultivated crops; forest 

land (%) was the sum of deciduous, evergreen, and 

mixed forest categories, as well as shrub/scrub; 

and urban land (%) was the sum of all developed 

and barren land categories. A human development 

index (%) for each site was calculated as the sum 

of agricultural and urban land. Locations of poultry 

houses were obtained from the Arkansas Highway 

and Transportation Department cultural features 

GIS database (Arkansas GIS O昀케ce 2014), and 
poultry house density (houses/km2) was calculated 

as number of houses divided by sub-watershed 

area, for each site.

Table 1. StreamSmart monitoring site information and watershed land use-land cover (LULC) characteristics, including 

poultry house density, agricultural, forest, and urban land, as well as the human development index (HDI).

Site #

Hydrologic Unit 

Code 10 Name Latitude Longitude

Site sub- 

watershed 

area (km2)

Poultry 

house 

density 

(houses/km2)

Agriculture 

(%)

Forest 

(%)

Urban 

(%)

HDI 

(%)

101 West Fork 35.982714 -94.173129 215 0.49 25.3 66.9 7.0 32.3

102 West Fork 35.865723 -94.117257 65 0.92 26.3 68.1 5.1 31.5

103 Headwaters 35.822256 -93.758937 29 0.17 4.0 92.6 1.7 5.7

104 Headwaters 35.818676 -93.779774 106 0.26 10.9 84.7 3.7 14.6

107 War Eagle 35.888319 -93.679017 50 0.04 15.5 81.1 2.7 18.2

108 War Eagle 35.887989 -93.678974 17 0 13.5 84.3 1.5 15.1

109 War Eagle 36.041958 -93.703225 273 0.29 22.2 73.6 3.3 25.5

200 West Fork 35.997178 -94.173949 5 1.20 40.0 36.8 29.6 69.6

201 Middle Fork 35.995825 -94.072894 174 0.67 27.3 68.8 2.8 30.1

202 West Fork 36.059103 -94.178209 1.63 0 1.2 19.0 79.8 81.0

205 Richland 36.022453 -93.859784 43 0.61 33.1 62.7 3.1 36.2

206 West Fork 36.055019 -94.161107 1.13 0 0 0.9 99.1 99.1

210 West Fork 36.043179 -94.135852 31 0 15.5 33.4 49.2 64.7

300 Beaver Reservoir 36.131947 -93.947956 52 1.00 51.0 42.6 5.5 56.5

301 War Eagle 36.149997 -93.740137 525 0.46 30.7 63.6 4.8 35.6

302 War Eagle 36.159851 -93.81169 56 1.18 66.8 27.9 5.3 72.1

303 War Eagle 36.195153 -93.789276 32 1.28 59.8 34.3 5.3 65.0

304 War Eagle 36.239342 -93.907653 50 1.00 61.7 31.8 5.8 67.4

305 War Eagle 36.267597 -93.94313 808 0.68 39.5 54.7 4.9 44.4

306 Beaver Reservoir 36.341208 -94.096513 7 0 15.1 55.4 31.0 46.1

307 War Eagle 36.104418 -93.75675 42 0.74 43.2 48.6 7.2 50.4

308 War Eagle 36.124453 -93.734211 61 0.62 43.4 44.6 11.3 54.8

https://modelmywatershed.org/
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Sample Collection and Analysis

Water Chemistry. Volunteer teams collected grab 

water samples quarterly (February, May, August, 

and November) at each site. Each sampling event 

was carried out at all sites within a two-week 

timeframe during base 昀氀ow conditions. Samples 
were collected from the thalweg while facing 

upstream from the access point and taking care 

not to capture any disturbed sediments. Clean 

and acid-washed sample bottles were provided 

by the Arkansas Water Resources Center Water 

Quality Lab and were triple rinsed at the stream by 

volunteers prior to sample collection. Samples were 

stored on ice and in the dark until being returned to 

the lab within 36 hours to allow processing within 

48 hours. Chain of custody was documented at 

each step.

Water samples were analyzed at the lab using 

standard procedures for the following water 

chemistry variables: alkalinity (mg/L CaCO
3
), 

conductivity (uS/cm), pH, total dissolved 

solids (TDS, mg/L), nitrate+nitrite-nitrogen 

(NO
x
-N, mg/L), total nitrogen (TN, mg/L), total 

phosphorus (TP, mg/L), and total suspended solids 

(TSS, mg/L). Analytical methods, detection and 

reporting limits, preservation, holding times, and 

quality assurance details are available at https://

awrc.uada.edu/water-quality-lab/certification-

and-quality-assurance/. The lab is certi昀椀ed under 
the State Environmental Laboratory Certi昀椀cation 
Program by the Arkansas Department of Energy 

and Environment – Environmental Quality 

Division.

Habitat Quality Assessment. At each site visit, 

StreamSmart volunteers completed the USEPA 

Rapid Bioassessment Protocols for Habitat 

Assessment rubric (Barbour et al. 1999), 

which uses visual assessment of habitat quality 

for aquatic life use. The rubric includes ten 

components: 1) epifaunal substrate/available 

cover, 2) embeddedness, 3) velocity/depth 

regime, 4) sediment deposition, 5) channel 昀氀ow 
status, 6) channel alteration, 7) frequency of 

ri昀툀es (or bends), 8) bank stability, 9) vegetative 
protection, and 10) riparian vegetative zone width. 

Descriptions were provided for 5-point intervals to 

score each component (0 – 20); component scores 

were summed into a habitat quality index score.

Aquatic Macroinvertebrate Community Index. 

During May and August site visits, volunteers 

collected aquatic macroinvertebrates for 

identi昀椀cation and community assessment. Stream 
ri昀툀e cross sections were sampled at an angle 
moving upstream at three locations, avoiding 

bridges and road crossings. Ri昀툀e locations were 
sampled by kicking into a D-frame net within a 

1 m2 area for one minute after 昀椀rst setting aside 
any large substrate in a collection tub. The net 

was rinsed with stream water into a container after 

each kick. Large substrate and net contents were 

examined for macroinvertebrates, which were 

removed for identi昀椀cation using StreamSmart’s 
simpli昀椀ed 昀氀ow chart.

The macroinvertebrate community index was 

designed by StreamSmart speci昀椀cally for non-
expert volunteers. Pre-de昀椀ned taxonomic units, 
approximately at the Family level, were marked 

as present (1) or absent (0) in a rubric. Taxa were 

grouped into categories based on relative sensitivity 

to habitat and water quality degradation (i.e., 

sensitive, less sensitive, and tolerant). Sensitive taxa 

included caddis昀氀y larvae, hellgrammites, may昀氀y 
nymphs, gilled snails, ri昀툀e beetle adult, stone昀氀y 
nymphs, and water penny larvae. Less sensitive 

taxa were beetle larvae, clams, crane 昀氀y larvae, 
cray昀椀sh, damsel昀氀y nymphs, dragon昀氀y nymphs, 
scuds, sowbugs, 昀椀sh昀氀y larvae, alder昀氀y larvae, and 
watersnipe 昀氀y larvae. Tolerant taxa were aquatic 
worms, black昀氀y larvae, leeches, midge larvae, and 
pouch snails. The macroinvertebrate community 

index was the sum of the count of present taxa after 

weighting each sensitivity group using multipliers 

of 3, 2, and 1 for sensitive, less sensitive, and 

tolerant taxa, respectively. Site water quality was 

classi昀椀ed as excellent (≥22), good (17-22), fair 
(11-16), or poor (<11) based on the index score.

Data Analysis

Site medians were calculated for all water 

chemistry, habitat, and macroinvertebrate 

variables, including habitat components and 

macroinvertebrate sensitivity groups, for use in 

stressor-response analysis. Site median calculation 

and all subsequently described analyses were carried 

out using R 4.1.2 (R Core Team 2021). We explored 

stressor-response relationships using Spearman 

rank-order correlation and non-parametric 

https://awrc.uada.edu/water-quality-lab/certification-and-quality-assurance/
https://awrc.uada.edu/water-quality-lab/certification-and-quality-assurance/
https://awrc.uada.edu/water-quality-lab/certification-and-quality-assurance/
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changepoint analysis (nCPA) (King and Richardson 

2003; Qian et al. 2003). Correlation is commonly 

used to describe monotonic water chemistry-

LULC relationships, facilitating comparison with 

preceding studies in the basin (Giovanetti et al. 

2013). However, these relationships can also be 

non-linear, such as thresholds stressor values 

associated with disproportionate water quality 

response. Non-parametric changepoint analysis 

divides data at a threshold value in the explanatory 

variable by minimizing deviance within groups. 

For a changepoint to be detected, groups on both 

sides of the threshold had to have at least three 

observations. For water chemistry, stressor-response 

analysis focused on LULC. For macroinvertebrates, 

potential stressors included water chemistry, 

habitat quality index and component scores, as 

well as LULC. Correlations and changepoints were 

considered signi昀椀cant if p<0.10.
Water quality can also relate to watershed 

stressors in a hierarchy, where a relationship may 

only be observed, or is much stronger, if other 

primary conditions are met. We explored potential 

hierarchy in water chemistry responses to LULC 

using categorical and regression tree analysis 

(CART; De’Ath and Fabricius 2000) with the rpart 

package in R (Therneau and Atkinson 2019). Data 

were insu昀케cient to explore stressor hierarchy 
and structure for macroinvertebrates. Similar to 

nCPA, CART divides and groups data to minimize 

deviance. However, CART can consider multiple 

variables simultaneously and recursively partitions 

data into subsets based on identi昀椀ed thresholds. 
These data subsets may then be split again based 

on secondary or tertiary thresholds. Control 

parameters in CART were tuned to require groups 

to contain at least three observations. Splits in 昀椀nal 
models were required to reduce deviance by at 

least 5% (i.e., complexity parameter ≥0.05). We 
used urban, agriculture, and human development 

index (but not forest) as model inputs to simplify 

results interpretation.

Results

StreamSmart Site Medians

Site medians for alkalinity, conductivity, and 

TDS each spanned an order of magnitude (6 – 150 

mg/L CaCO
3
, 24 – 542 µS/cm, and 30 – 303 mg/L, 

respectively) (Table 2). Auto-correlation among 

these three variables was evident, with the least 

and greatest medians aligning across sites. Site 

median pH ranged from slightly less than neutral 

(6.6) to alkaline (8.0). For nutrients, TP varied 

within a narrow range (0.010 – 0.038 mg/L), 

except for site 308, where municipal wastewater 

treatment plant in昀氀uence was evident (0.11 mg/L). 
TN medians, in contrast, varied over an order of 

magnitude (0.12 – 3.8 mg/L). All TSS medians 

were less than the lab’s reporting limit of 10 mg/L. 

The minimum habitat quality index (99) and 

macroinvertebrate community index (7.5) medians 

were both observed at site 210, while site 301 had 

the greatest median habitat quality index (145), and 

site 205 had the greatest median macroinvertebrate 

community index (20). 

Water Chemistry-LULC Relationships
All water chemistry variables, except TSS (p 

> 0.10), were correlated with the level of total 

anthropogenic watershed disturbance (Table 3; 

Figure 2A-F), increasing with increasing human 

development index (p < 0.001, rho = 0.61 – 0.95) 

and decreasing with increasing forest (p < 0.001, 

rho = -0.66 – -0.94). All water chemistry analytes 

were signi昀椀cantly (positively) correlated with 
urban land (p = < 0.001 – 0.080, rho = 0.39 – 

0.87), but correlation analysis was not e昀昀ective for 
describing water chemistry-LULC relationships 

with agricultural land, with the exception of TN 

(p = 0.014, rho = 0.53). Water quality medians 

were highly variable among sites with the least 

agriculture, which diluted otherwise linear signals 

above ~10% agriculture. As with agriculture, only 

TN was signi昀椀cantly correlated with poultry house 
density (p = 0.097, rho = 0.37). Pasture land and 

poultry houses are often spatially paired in the 

basin.

Changepoints in the human development index 

and forest land were found for all analytes (p < 

0.001 – 0.034, R2 = 0.37 – 0.82), except TSS (p 

> 0.10), suggesting that water chemistry values 

tended to be greater above a human development 

index threshold range = 27.8 – 45.3% and tended 

to be less above a forest land threshold range = 

29.9 – 71.2%. Thresholds ranging from 4 – 5% 

urban land were also detected for all variables (p 

< 0.001 – 0.068, R2 = 0.31 – 0.75), except TSS. 



52

UCOWRJournal of Contemporary Water Research & Education

Informing Volunteer Water Quality Monitoring Program Design and Watershed Planning:

Case Study of StreamSmart Data Analysis in the Upper White River Basin, Arkansas

In contrast to correlation analysis, agricultural 

land thresholds were identi昀椀ed for both TN (p < 
0.001, R2 = 0.56) and TP (p = 0.070, R2 = 0.36), 

estimated as 43.2% (CI = 16.0 – 49.9%) and 4.0% 

(CI = 1.2 – 45.3%), respectively. The nCPA models 

for alkalinity, conductivity, pH, and TDS tended to 

have greater explanatory power (R2 = 0.67 – 0.82) 

relative to nutrients (R2 = 0.31 – 0.56), as well as 

greater con昀椀dence in the threshold estimate (i.e., 
narrower CI).

Macroinvertebrate Community Relationships

Total macroinvertebrate community index 

scores were correlated with urban land (p = 

0.047, rho = -0.56) and three components of the 

habitat quality index, but not the cumulative 

index (Table 4; Figure 3A-F). These components 

were channel 昀氀ow status (p = 0.032, rho = 0.60), 
epifaunal substrate/available cover (p = 0.035, rho 

= 0.59), and frequency of ri昀툀es/bends (p = 0.045, 
rho = 0.56). Changepoints were also identi昀椀ed, 
suggesting greater macroinvertebrate community 

scores occurring above thresholds of 11 in both 

channel 昀氀ow status sub-scores (CI = 10.0 – 13.3) 
and epifaunal substrate/available cover sub-scores 

(CI = 9.5 – 14.0). The sub-score of 11 ranks just 

above the mid-point in the possible range (i.e., 0 – 

20), and is the lowest value considered to represent 

“sub-optimal” conditions.
These same relationships were also observed 

when sub-scores for the sensitive (epifaunal 

substrate/available cover and frequency of 

Table 2. Sample counts for total sampling events (n
events

) and macroinvertebrate collections (n
MI

) at StreamSmart 

monitoring sites. Site medians for each water chemistry variable, as well as habitat quality index (HQI) assessment 

and macroinvertebrate community index scores.

Site n
events

Alk 

(mg/L 

CaCO
3
)

Cond 

(µS/cm) pH

TDS 

(mg/L)

TN 

(mg/L)

TP 

(mg/L)

TSS 

(mg/L) HQI n
MI

Macro 

Index

101 22 64 193 7.8 99 0.34 0.012 2.1 125 0 -

102 24 32 103 7.7 54 0.34 0.014 2.2 124 6 15

103 20 6 24 6.6 30 0.12 0.014 1.2 133 8 19

104 19 10 32 6.8 31 0.28 0.014 1.8 120 8 12

107 8 20 55 7.0 39 0.13 0.013 0.6 135 0 -

108 7 12 40 6.8 32 0.12 0.012 0.7 135 0 -

109 7 30 81 7.0 60 0.53 0.015 1.7 141 2 14

200 14 138 527 7.8 312 0.29 0.012 3.0 108 0 -

201 23 43 118 7.5 65 0.47 0.010 1.4 129 6 15

202 10 143 542 7.7 303 1.2 0.023 1.9 134 0 -

205 13 32 105 7.3 65 0.93 0.012 1.1 143 3 20

206 26 150 502 8.0 284 2.9 0.038 1.3 105 0 -

210 21 132 476 7.8 254 0.92 0.020 2.7 99 6 8

300 29 135 396 7.7 218 3.5 0.026 1.2 128 8 21

301 24 64 194 7.7 97 1.3 0.026 4.5 146 0 -

302 28 134 352 8.0 200 3.4 0.025 1.3 145 9 15

303 30 100 260 7.4 153 3.4 0.020 0.4 120 10 14

304 28 139 348 7.3 207 3.8 0.020 1.1 145 10 9

305 27 84 227 7.7 126 1.9 0.019 3.9 140 0 -

306 29 140 337 7.9 181 1.8 0.016 3.2 111 1 14

307 21 76 239 7.6 127 1.0 0.020 1.4 125 2 12

308 21 100 436 7.8 233 2.7 0.11 2.1 136 2 10
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Table 3. Water chemistry and land use-land cover (LULC) relationships based on results of Spearman rank correlation 

analysis and non-parametric changepoint analysis (nCPA) on StreamSmart site medians. For both tests, a result is 

signi昀椀cant if p<0.10. The Spearman rank correlation coe昀케cient (rho) describes the relationship strength and ranges 
from -1 to 1, with positive and negative values denoting positive and inverse correlations, respectively. The results of 

nCPA include a changepoint (CP) value with a con昀椀dence interval (CI) encompassing the lower (5%) and upper (95%) 
con昀椀dence estimates around the threshold values. The mean of the water chemistry variable values distributed below 
(left) and above (right) the LULC threshold are also provided.

--- Spearman --- ------------------------- nCPA -------------------------

Water Chemistry Geospatial p rho p CP (CI) R2

mean 

left

mean 

right

Alk (mg/L CaCO
3
) % Agriculture 0.36 - 0.11 - - - -

Alk (mg/L CaCO
3
) % Forest <0.001 -0.92 <0.001 59.1 (42.7-61.2) 0.82 125 31

Alk (mg/L CaCO
3
) % HDI <0.001 0.93 <0.001 40.3 (38.4-54.6) 0.82 31 125

Alk (mg/L CaCO
3
) % Urban <0.001 0.87 <0.001 5.2 (4.3-5.4) 0.75 33 123

Alk (mg/L CaCO
3
) PHD (house/km2) 0.60 - 0.100 - - - -

Cond (µS/cm) % Agriculture 0.28 - 0.24 - - - -

Cond (µS/cm) % Forest <0.001 -0.94 <0.001 59.1 (41.0-61.2) 0.72 382 94

Cond (µS/cm) % HDI <0.001 0.95 <0.001 45.3 (39.2-57.7) 0.74 107 398

Cond (µS/cm) % Urban <0.001 0.87 <0.001 5.2 (4.3-18.4) 0.69 98 379

Cond (µS/cm) PHD (house/km2) 0.46 - 0.28 - - - -

pH % Agriculture 0.66 - 0.40 - - - -

pH % Forest <0.001 -0.70 <0.001 71.2 (58.6-74.9) 0.77 7.67 6.84

pH % HDI <0.001 0.72 <0.001 27.8 (22.6-33.2) 0.77 6.84 7.67

pH % Urban <0.001 0.79 <0.001 4.3 (2.7-4.5) 0.69 7.00 7.71

pH PHD (house/km2) 0.80 - 0.32 - - - -

TDS (mg/L) % Agriculture 0.26 - 0.22 - - - -

TDS (mg/L) % Forest <0.001 -0.93 <0.001 45.6 (41.0-61.2) 0.74 241 77

TDS (mg/L) % HDI <0.001 0.95 <0.001 45.3 (40.3-61.0) 0.75 63 224

TDS (mg/L) % Urban <0.001 0.88 <0.001 5.2 (4.5-19.0) 0.67 60 212

TDS (mg/L) PHD (house/km2) 0.43 - 0.19 - - - -

TN (mg/L) % Agriculture 0.014 0.53 <0.001 43.2 (16.0-49.9) 0.56 0.86 3.53

TN (mg/L) % Forest <0.001 -0.77 0.008 59.1 (32.6-65.2) 0.49 2.20 0.45

TN (mg/L) % HDI <0.001 0.73 0.005 40.3 (33.5-64.9) 0.49 0.45 2.20

TN (mg/L) % Urban 0.018 0.51 0.047 5.2 (4.0-5.4) 0.34 0.61 2.06

TN (mg/L) PHD (house/km2) 0.097 0.37 0.019 1.0 (0.1-1.0) 0.46 0.89 2.88

TP (mg/L) % Agriculture 0.60 - 0.070 4.0 (1.2-45.3) 0.36 0.025 0.017

TP (mg/L) % Forest 0.001 -0.66 0.015 29.9 (10.0-65.8) 0.42 0.029 0.016

TP (mg/L) % HDI 0.003 0.61 0.034 33.9 (33.5-72.1) 0.37 0.013 0.021

TP (mg/L) % Urban 0.013 0.53 0.068 4.3 (4.0-49.2) 0.31 0.013 0.021

TP (mg/L) PHD (house/km2) 0.99 - 0.66 - - - -

TSS (mg/L) % Agriculture 0.58 - 0.26 - - - -

TSS (mg/L) % Forest 0.77 - 0.45 - - - -

TSS (mg/L) % HDI 0.71 - 0.42 - - - -

TSS (mg/L) % Urban 0.080 0.39 0.21 - - - -

TSS (mg/L) PHD (house/km2) 0.61 - 0.81 - - - -
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scores was in range with the values observed using 

the total community index. Further, additional 

stressors were identi昀椀ed using group sub-scores. 
These included thresholds in forest land (p = 0.033, 

R2 = 0.48) of 38.5% (CI = 33.8 – 57.1%) and the 

human development index (p = 0.099, R2 = 0.19) 

of 53.5% (CI = 35.5 – 60.6%), which suggested 

greater sensitive taxa presence when forest was 

greatest and the human development index was 

least. For less sensitive taxa, correlations with 

agricultural land (p = 0.098, rho = 0.48) and TSS 

(p = 0.051, rho = -0.55) were identi昀椀ed, as well 
as thresholds in bank stability scores (p = 0.091, 

R2 = 0.39) of 11.5 (CI = 10.5 – 15.0) and the total 

habitat quality index (p = 0.098, R2 = 0.46) of 126.5 

(CI = 115.5 – 131.0). Both changepoints suggested 

greater less sensitive taxa presence when habitat 

quality was greater. For tolerant taxa, a changepoint 

in sediment deposition scores of 14.5 (CI = 11.0 – 

15.0) was detected that suggested greater presence 

with less sediment deposition.

Categorical and Regression Tree Models

Hierarchy in LULC characteristics was detected 

for TN, TP, conductivity, and TDS (Figure 4A-

C; TDS not shown). For the remaining variables, 

secondary splits in the data were either not 

identi昀椀ed or did not reduce relative error beyond the 
primary split. For TN, the primary LULC predictor 

was agricultural land, with all of the greatest 

TN concentrations (n=4, 3.5 mg/L, on average) 

observed above a threshold of 47% (Figure 4A). For 

sites with less than 47% agriculture, a secondary 

split was observed in the human development 

index, explaining an additional 15% of dataset 

variability, with the least TN concentrations (n=8; 

0.29 mg/L, on average) occurring below 34% 

human development. A tertiary split in agricultural 

land = 15.3% was observed in TN concentrations at 

sites with ≥ 34% human development, but no more 
than 47% agriculture, that divided intermediate 

TN concentrations into two groups based on the 

relative contribution of urban versus agricultural 

land to the human development index. 

For TP, CART identi昀椀ed two thresholds in the 
human development index, with 71% and 34% as 

the primary and secondary thresholds, respectively 

(Figure 4B). This result di昀昀ered from nCPA, 
which identi昀椀ed 34% as the most meaningful 

Figure 2. Non-parametric changepoint analysis results 

for A) alkalinity, B) conductivity, C) total dissolved 

solids, D) total nitrogen (TN), E) total phosphorus (TP), 

and F) macroinvertebrate community sensitive taxa 

showing thresholds and associated con昀椀dence interval 
in the human development index (HDI, %) as dashed 

lines and gray shaded areas, respectively.

ri昀툀es/bends) or less sensitive macroinvertebrate 
group (channel 昀氀ow status) were the response 
variable (Table 4; Figure 3A-F). The strength of 

relationships, variability explained, and value of 

changepoints for macroinvertebrate group sub-
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changepoint, with 71% as the upper bounds of the 

con昀椀dence interval. The CART model suggested 
that the greatest TP concentrations (n=3, TP = 

0.028 mg/L on average) were associated with 

human development ≥ 71%, accounting for 42% 
of variability in the dataset. The secondary split 

associated the smallest TP concentrations (n=8, TP 

= 0.013 mg/L, on average) with human development 

< 34% and intermediate TP concentrations (n=10, 

TP = 0.019 mg/L, on average) with a human 

development index range of 34 – 71%.

For conductivity, the primary split was at 45% 

human development (Figure 4C). A secondary 

split in the human development index = 32% 

was also observed, suggesting that the least 

conductivity (n=7, 65 µs/cm, on average) was 
associated with human development < 32%, while 

intermediate conductivities (n=4, 180 µs/cm, on 
average) occurred within a range of 32 – 45%. For 

sites with a human development index ≥ 45%, a 
secondary split was also observed at 18% urban. 

Similar to the CART model for TN, this threshold 

separated median conductivities for sites above a 

human development threshold based on relative 

contributions of agricultural and urban lands to 

the overall index. The greatest conductivities 

(n=5, 477 µS/cm, on average) were observed at 
sites where urban land was > 18% (of at least 45% 

human development), while conductivities at sites 

with urban land below that threshold were about 

1/3 less (n=5, 319 µS/cm, on average).

Discussion

Implications for StreamSmart and Other 

Volunteer Monitoring Programs

Our synthesis of stressor-response approaches 

showed a number of relationships in the 

StreamSmart database, including thresholds and 

hierarchy. These 昀椀ndings show the importance 
of considering multiple types of relationships in 

stressor-response analysis, and this process could 

Table 4. Select macroinvertebrate community index and sensitivity group sub-score relationships with potential 

biological stressors, including the habitat quality index and components, land use-land cover (LULC), and water 

chemistry based on results of Spearman rank correlation analysis and non-parametric changepoint analysis (nCPA) 

on StreamSmart site medians. For both tests, a result is signi昀椀cant if p<0.10, and only statistically signi昀椀cant 
relationships are shown due to the large number of stressor-response pairs. The Spearman rank correlation coe昀케cient 
(rho) describes the relationship strength and ranges from -1 to 1, with positive and negative values denoting positive 

and inverse correlations, respectively. The results of nCPA include a changepoint (CP) value with a con昀椀dence interval 
(CI) encompassing the lower (5%) and upper (95%) con昀椀dence estimates around the threshold values. The mean of 
the water chemistry variable values distributed below (left) and above (right) the LULC threshold are also provided.

--- Spearman --- ----------------- nCPA -----------------

Macro metric Stressor p rho p R2 CP (CI)

Total % Urban 0.047 -0.56 - - -

Total Channel 昀氀ow status 0.032 0.60 0.032 0.49 11.0 (10.0-13.3)

Total Epifaunal substrate/available cover 0.035 0.59 0.011 0.48 11.0 (9.5-14.0)

Total Frequency of ri昀툀es/bends 0.045 0.56 - - -

Sensitive % Forest 0.21 - 0.033 0.48 38.5 (33.8-57.1)

Sensitive % HDI 0.23 - 0.099 0.19 53.5 (25.5-60.6)

Sensitive Epifaunal substrate/available cover 0.011 0.68 0.003 0.58 12.3 (9.5-14.0)

Sensitive Frequency of ri昀툀es/bends 0.085 0.50 - - -

Less Sensitive % Agriculture 0.098 0.48 - - -

Less Sensitive Bank stability 0.13 - 0.091 0.39 11.5 (10.5-15.0)

Less Sensitive Channel 昀氀ow status 0.052 0.55 0.083 0.32 11.5 (10.0-12.8)

Less Sensitive HQI 0.10 - 0.098 0.46 126.5 (115.5-131.0)

Less Sensitive TSS 0.051 -0.55 - - -

Tolerant Sediment deposition 0.008 0.70 0.008 0.52 14.5 (11.0-15.0)
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be applied to data exploration by other volunteer 

monitoring groups. We found that it was possible 

to detect water quality dynamics with only 21 

sites for water chemistry and as few as 14 sites 

for macroinvertebrate data. However, the small 

number of StreamSmart sites is a limitation, as 

evidenced by large con昀椀dence intervals around 
many of the threshold estimates (such as in Figure 

2D-F). The StreamSmart program can increase 

statistical power and return on investment by 

joining program data with datasets from other 

local, state, or national entities for further analysis 

and re昀椀nement (Stepenuck and Genskow 2018). 
StreamSmart would also bene昀椀t by introducing 
scienti昀椀c knowledge “co-creation” to the volunteer 
experience, which promotes stakeholder buy-in to 

watershed planning (Buytaert et al. 2014).

Thresholds and CART results may be especially 

useful for planning tools, as they not only show that 

water chemistry and LULC are related, but also 

o昀昀er potential target values for managing LULC 

change to protect water quality. Detected water-

chemistry-LULC relationships were consistent 

with prior studies in the region (Giovanetti et 

al. 2013; McCarty et al. 2018), as well as global 

patterns (Lintern et al. 2017), and showed greater 

nutrients, salts, and sediments with greater human 

activity in the basin.

Stressor-response relationships were detected 

for the StreamSmart macroinvertebrate data, 

but fewer than for water chemistry. The total 

community index decreased with increasing 

urban land and decreases in several individual 

habitat components. Many preceding studies have 

observed biodiversity loss and community shifts 

related to habitat quality (Santucci et al. 2005; 

Stone et al. 2005; Liao et al. 2018), watershed 

LULC (Weijters et al. 2009; Kuemmerlen et al. 

2015), and nutrients (Evans-White et al. 2013). 

These include volunteer monitoring studies, 

which also observed relationships with urban 

land (Fore et al. 2001). The small number of sites 

Figure 3. Side-by-side comparison of stressor-response relationships using the full macroinvertebrate community 

index versus sensitive or less sensitive taxa groups, for habitat component stressors A-B) epifaunal substrate/available 

cover, C-D) channel 昀氀ow status, and E-F) ri昀툀e/bend frequency score.
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with macroinvertebrate data likely limited study 

昀椀ndings. StreamSmart’s unique index also presents 
a challenge for increasing statistical power and 

scope by incorporating outside datasets. More 

traditional monitoring programs use more complex, 

but standard metrics, such as the USEPA Rapid 

Bioassessment Protocols Macroinvertebrate Index 

of Biotic Integrity (RBIBI; Barbour et al. 1999). 

Validating the StreamSmart index to the RBIBI or 

other professional indices may be possible (Engel 

and Voshell, Jr. 2002). Alternately, StreamSmart 
could explore partnerships with other groups that 

also want to use a simpli昀椀ed index.
StreamSmart could also go in a di昀昀erent 

direction and use study 昀椀ndings to streamline 
the macroinvertebrate and habitat assessments by 

including just a few key pieces of information. 

Analysis showed the same meaningful stressor-

response relationships were detected when 

macroinvertebrate sensitivity groups were 

the response variable, as well as when habitat 

components were the stressors. These 昀椀ndings 
suggest that StreamSmart could obtain the same 

information by assessing only the components 

that showed meaningful stressor-response 

relationships. This approach could also be applied 

by other volunteer monitoring groups with 

concerns about providing adequate training for 

more complex assessments, or about keeping the 

volunteer experience focused on fun and a minimal 

time investment.

It is not known why the sensitive 

macroinvertebrate groups or speci昀椀c habitat 
components were especially predictive. But, a 

possible explanation is natural biases (Nerbonne et 

al. 2008) and inherent properties of the di昀昀erent 
macroinvertebrates (Nerbonne and Vondracek 

2003) that mean volunteers do a better job with 

these variables. Many sensitive and less sensitive 

taxa (e.g., may昀氀ies, stone昀氀ies, cray昀椀sh) have traits, 

Figure 4. Categorical and regression tree models for A) TN, B) TP, and C) conductivity based on the watershed land 

use-land cover characteristics agriculture land (%), urban land (%), and agricultural and urban land combined in a 

human development index (HDI, %).



58

UCOWRJournal of Contemporary Water Research & Education

Informing Volunteer Water Quality Monitoring Program Design and Watershed Planning:

Case Study of StreamSmart Data Analysis in the Upper White River Basin, Arkansas

such as high motility or large bodies, that make them 

easier to detect, as well as anthropomorphically 

charismatic features such as visible eyes, legs, gills, 

and pincers. Even those that are smaller or lack 

as many charismatic features, such as caddis昀氀y 
larvae, display engaging and highly identi昀椀able 
behaviors, such as constructing casings from 

gravel or leaf litter. By contrast, tolerant taxa tend 

to have less motility and smaller bodies, as well 

as association with detritus, that can make both 

detection and identi昀椀cation more di昀케cult, tedious, 
and unappealing (Peeters et al. 2022).

Only sedimentation was identi昀椀ed as a stressor 
for tolerant taxa, and this result was the opposite 

of the expected relationship, suggesting greater 

tolerant taxa presence with less sedimentation 

(i.e., greater scores). However, other studies have 

shown that community tolerance increases with 

greater TSS and turbidity (Chase et al. 2017). The 

StreamSmart data relationship makes the valid 

point that tolerant taxa are part of the diverse 

communities associated with good habitat quality. 

But, it also shows that the function of tolerant taxa 

in the StreamSmart index is redundant. In general, 

it may not be possible to capture community 

tolerance dynamics with simpli昀椀ed identi昀椀cation 
protocols because information on community 

tolerance is tied up in metrics using counts and 

percentages of individuals (Xu et al. 2013), or 

identi昀椀cation below the Family level is needed 
(Dusabe et al. 2022).

It is also possible that some habitat components 

may have a disproportionately large e昀昀ect in the 
river networks of the Upper White River Basin. 

Components identi昀椀ed as stressors were epifaunal 
substrate/available cover, ri昀툀e/bend frequency, and 
channel 昀氀ow status, which do have commonality 
as descriptors of the stream channel itself, rather 

than bank or riparian attributes. However, another 

explanation is di昀昀erences in volunteers’ relative 
understanding of the di昀昀erent components. For 
example, the strongest habitat predictor was 

epifaunal substrate/available cover, which may 

already be encompassed by local knowledge of 

ideal in-stream habitat for game 昀椀shing.

Implications for Watershed Management 
Planning

Water chemistry-LULC relationships identi昀椀ed 

in this study can be used to inform programming 

decisions by H
2
Ozarks, Beaver Watershed 

Alliance, and the Beaver Water District source 

water protection program, with the caveat that 

these 昀椀ndings would ideally be re昀椀ned and 
strengthened by bringing in additional data 

sources. For all water chemistry variables, the most 

meaningful anthropogenic LULC relationship 

was with the human development index, which 

combines agricultural and urban lands. Attempts 

to separately describe agricultural e昀昀ects showed 
the advantages of basing management tools 

for mixed urban-agriculture watersheds on the 

human development index. Watershed LULC 

characteristics are interrelated and agricultural 

land was inversely auto-correlated with both 

urban and forest land. The opposite e昀昀ects of 
these LULC characteristics on water chemistry 

created noise for low-range agriculture sites that 

prevented detection of an exclusively agricultural 

e昀昀ect on water chemistry, with the exception of 
TN.

Similarly, uniform nCPA results suggesting 

consistent and highly predictive thresholds at 

minimal levels of urban land (4 – 5%) likely re昀氀ect 
that urbanization in the basin tends to occur on prior 

pasture, where the watershed human development 

index may already be near or above thresholds 

for greater water chemistry e昀昀ects. Indeed, water 
chemistry-human development index relationships 

showed little scatter that would evidence such a 

disproportionate e昀昀ect of urban land. The CART 
models for TN and conductivity, however, add 

nuance to this interpretation, suggesting that a 

disproportionate e昀昀ect of urban and agricultural 
lands may be present, but only in watersheds with 

human development at or above thresholds of 34 

– 45%. Further, urban land thresholds associated 

with disproportionate e昀昀ects in CART models were 
closer to 20% than the 4 – 5% suggested by nCPA.

Thresholds in the human development index 

may be especially useful watershed management 

and planning tools because they delineate a level, 

or range, that suggests an increase in potential risks 

to water quality due to human activities. Watershed 

organizations in the basin can prioritize among 

candidate sites for best management practices 

by screening for watershed human development 

index greater than thresholds to determine both 
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the greatest need for mitigation and the greatest 

potential for return on investment. Human 

development index thresholds di昀昀ered between 
water chemistry variables, though not substantially, 

ranging from approximately 30 – 45%. These 

di昀昀erences could re昀氀ect di昀昀erent controls on salt, 
nutrient, or sediment concentrations, but also data 

limitations related to a small sample size.

The CART models provide further context 

for prioritization, with both similarities and 

di昀昀erences between variables. For the salts that 
contribute to conductivity, forest land maintenance 

of at least 55% (i.e., human development index = 

45%) is a potential path to keeping levels low in 

least-developed watersheds. Additional bene昀椀ts 
may accrue if forest is maintained >70%. For more 

developed watersheds (human development index 

≥45%), mitigations may have the greatest e昀케cacy 
by targeting urban and urbanizing areas with 

low-impact development or green infrastructure 

that reduces or slows runo昀昀 from impervious 
surfaces (Carey et al. 2013). However, agricultural 

conservation practices should also provide bene昀椀t.
For nutrients, multiple TP response thresholds 

to the human development provide forest 

maintenance targets for both the least and 

most developed watersheds (~70% and ~30% 

forest, respectively), as well as multiple human 

development index ranges to delineate best 

management practice candidate sites. The CART 

model for TN di昀昀ered from other analytes by 
having a primary split in agricultural land. All sites 

having median TN concentration > 3.0 mg/L also 

had > 50% agriculture, making implementation 

of agricultural conservation practices, speci昀椀cally 
in areas where agriculture is greatest, a potential 

priority route to TN reduction, with the primary 

goal of reducing runo昀昀 and leaching of nutrients 
from animal manures (Quinn and Stroud 2002). 

However, a similar disproportionate urban versus 

agricultural e昀昀ect to the conductivity model was 
observed for TN among sites with the greatest 

human development index, after screening out the 

sites with the most agriculture. Thus, investment in 

urban-oriented practices also has potential to make 

a di昀昀erence for watershed areas with this LULC 
pro昀椀le.

Sediment-LULC relationships were less clear 

than for other water chemistry variables, with 

a monotonic TSS response to urban land, but no 

responses to agriculture or the human development 

index. The overall low-range of TSS site medians 

may limit potential to observe LULC e昀昀ects on 
in-stream sediment concentrations. StreamSmart 

data are collected, by design, only under base 昀氀ow 
conditions, which has been shown to be e昀昀ective 
for identifying sub-watersheds with greater 

nutrient concentrations, while also allowing for 

broadening monitoring coverage (McCarty and 

Haggard 2016). This analysis suggests potential 

limits to this approach for TSS; a more pronounced 

TSS gradient, as well as LULC linkages, might 

better be detected under storm 昀氀ow conditions.

Conclusions

Study results show that StreamSmart volunteers 

are providing a valuable water quality monitoring 

service. The value of a high-quality water 

chemistry baseline dataset and LULC relationships 

for the Upper White River Basin accrues return on 

investment by StreamSmart volunteers, H
2
Ozarks, 

and partner organizations, with the potential to 

inform watershed management planning through 

“co-creation” of decision-making support tools 
with other monitoring entities. The volunteer 

monitoring macroinvertebrate community and 

habitat quality data were also informative about 

water quality dynamics in the basin, though 

potentially limited by sample size and complexities 

around combining with outside data. Stressor-

response relationships detected for sensitive 

and less sensitive macroinvertebrate groups, as 

well as habitat components, suggest potential 

bias in how the StreamSmart volunteers conduct 

these assessments, but also o昀昀er an approach to 
streamlining these complex tasks. StreamSmart, 

as well as similar volunteer monitoring programs, 

can leverage this information to improve the 

volunteer experience and 昀椀nd the best avenues 
for communication with stakeholders through the 

aspects of watershed science, habitat quality, and 

biodiversity that are already encompassed by local 

knowledge.
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