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Abstract: Fecal indicator bacteria are routinely used to assess surface water sanitary quality. The State 
of Texas uses Total Maximum Daily Loads to address water bodies that exceed the allowable fecal 
indicator bacteria criteria. The effectiveness of these processes in decreasing the fecal indicator bacteria 
concentrations has been debated due to the diversity and nature of fecal indicator bacteria sources. We 
assessed actual and flow-adjusted trends in measured Escherichia coli (E. coli) concentrations at 721 
freshwater stream sites from 2001 through 2021. We also compared odds of statistical improvement of E. 

coli concentrations at sites before and after the adoption of Total Maximum Daily Loads (adopted from 2008 
through 2014). Results indicate non-significant differences in the odds of statistically detected improvements 
in E. coli concentration between pre-Total Maximum Daily Load and post-Total Maximum Daily Load sites. 
Although the State of Texas and numerous watershed stakeholders have made efforts to address water 
quality impairments, these results join a body of evidence that water quality improvements are stagnating 
in the state. Furthermore, this study leverages water quality data used for state water quality standards 
assessment purposes and highlights that robust monitoring program design is needed to effectively assess 
the progress of water quality planning efforts.
Keywords: Total Maximum Daily Load, indicator bacteria, water quality, trend test

E
levated fecal indicator bacteria (FIB) 

concentrations are responsible for 

approximately 40% of water quality 

impairments in the State of Texas (TCEQ 2019). 

Escherichia coli (E. coli) and enterococci are 

non-host specific bacteria typically present in 
the gut of warm-blooded animals and utilized 

as FIB to indicate the potential for recent fecal 

contamination of water bodies. E. coli and 

enterococci concentrations are evaluated using 

numeric criteria based on U.S. Environmental 

Protection Agency (EPA) studies that positively 

correlated the incidences of gastrointestinal 

illnesses with concentrations of E. coli or 

enterococci at recreational beaches with known 

point source sewage discharges (Dufour 

1984; Fujioka et al. 2015). While substantial 

improvements in point sources of FIB (end of pipe 

discharges such as municipal or other wastewater 

facilities) have been achieved through the Clean 

Water Act and its amendments, non-point sources 

have remained a substantial challenge (National 

Research Council 2001; Benham et al. 2008). 

Potential non-point sources of FIB are generally 

diffuse across a watershed and can include domestic 

Research Implications

• Despite substantial efforts, only 7.4% 
of water quality monitoring stations had 
statistically decreasing Escherichia coli 
concentrations after adoption of a Total 
Maximum Daily Load (TMDL).

• We observed no evidence of a difference in 
the odds of detecting statistically decreasing 
Escherichia coli concentrations between 
stations before a TMDL and after a TMDL.

• Additional research is called for to understand 
the commonalities in successful water quality 
planning efforts and to identify challenges in 
the existing state water quality planning and 
implementation framework. 
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livestock, wildlife, septic systems, pets, and any 

other potential source of fecal contamination in 

a watershed. Furthermore, sediments and algal 

communities can harbor and potentially allow 

E. coli to naturalize in the environment (Ishii 

and Sadowsky 2008). The diffuse nature of non-
point sources of FIB, background contributions 

from wildlife, and potential for naturalization in 

the environment present considerable challenges 

for entities involved in improving impaired 

waterbodies.

Federal, state, and local government agencies 

and stakeholders have devoted substantial resources 

to address the sources of these impairments. 

Through July 2018, the Texas Commission on 

Environmental Quality (TCEQ) has developed 

and approved 187 Total Maximum Daily Loads 

(TMDLs) that define the FIB load allocations 
for water bodies not meeting state water quality 

standards. In addition to TMDL development, the 

TCEQ and Texas State Soil and Water Conservation 

Board provided funding and support for the 

development of 34 accepted watershed-based 

plans by local stakeholders through July 2018. 

From 1998 through 2015, the U.S. Department of 

Agriculture contributed over $171 million in cost-

share payments to Texas agricultural producers to 

implement best management practices that protect 

or improve water quality (Environmental Working 

Group 2016). Local and regional governmental 

entities are also working to address non-point 

source driven impairments through updated codes 

and design guidance that promote low impact 

development. Notable examples include green 

stormwater infrastructure design criteria adopted 

in Harris County, low impact design guidance 

from the San Antonio River Authority, and the City 

of Austin’s watershed protection ordinance among 

others (Storey et al. 2011; Dorman et al. 2013; Kip 

2016).

Achieving in-stream FIB reductions is 

challenging because of strong influences of land 
cover on FIB concentrations and the wide diversity 

of potential point and non-point indicator bacteria 

sources amongst watersheds (Smith and Perdeck 

2004; Mallin et al. 2009). Observed improvements 

in non-point source degraded water quality are 

hindered by water quality response lag times, shifts 

in climate and streamflow that obscure impacts 

of improved land management practices, changes 

in land use and land cover, and the difficulty in 
translating site-scale runoff and pollutant reductions 
to watershed-scale water quality improvements 

(Meals et al. 2010; Tomer and Locke 2011).

TMDLs and watershed-based plans are the two 

primary tools available to the State of Texas for 

addressing water quality impairments, with the 

former being most used. TMDLs identify the total 

pollutant load that a water body can assimilate 

and still meet water quality standards. TMDLs 

also assign portions of the pollutant load to point 

and non-point sources. Alongside a TMDL, 

an Implementation Plan (I-Plan) is developed 

using stakeholder input to identify how TMDL 

allocations will be achieved (Benham et al. 2008). 

Historically, TMDLs were treated as desktop 

modelling exercises and generally considered well 

suited for point-source driven impairments that can 

be easily modeled as steady-state systems (Haith 

2003). However, there are concerns about the 

effectiveness of the approach for non-point source 
dominated systems, especially in agriculturally 

dominated watersheds that do not fall under state 

or federal stormwater regulations (Laitos and 

Ruckriegle 2012).

One indication that collective efforts are 
beginning to work is a decrease in the number of 

FIB impaired water bodies from 320 segments 

in 2010 to 237 segments in 2018 (TCEQ 2019). 

While water body de-listings are one metric of 

improvement, further insight can be gleaned to 

provide appropriate context of the relative impacts 

(or lack of impacts) from TMDLs. For example, 

a water body that is orders of magnitude above 

the standard may see significant water quality 
improvement but remain on the list of impaired 

water bodies. Conversely, an unimpaired water 

body may see undesired increases in bacteria loads 

but not enough to trigger an impairment listing. 

Furthermore, the number of listings is a flawed 
metric due to administrative reasons for removal 

such as changes in water body classification 
(lengthening or shortening of the assessed water 

body) or changes in water quality criteria.

With nearly 200 completed TMDLs addressing 

bacteria impairments in the State of Texas, there 

is an opportunity to assess the effectiveness of 
TMDLs in achieving detectable water quality 
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improvements. Trends in water quality can be 

masked by natural variation in precipitation and 

discharge because of the correlation between 

pollutant concentration and flow. Therefore, 
flow-adjustment methods can provide insight 
into whether pollutant concentration trends are 

driven primarily by changes in streamflow or on 
the ground practices (Helsel and Hirsch 2002; 

Stow and Borsuk 2003). This study intends to 

(1) describe actual and flow-adjusted indicator 
bacteria trends across the state, and (2) assess the 

effect of TMDLs on indicator bacteria trends.

Methods

Data

The TCEQ Surface Water Quality Monitoring 

(SWQM) stations and associated E. coli monitoring 

data were obtained from the Water Quality Portal 

(https://www.waterqualitydata.us/) using the 

“dataRetrieval” package in R version 4.2.1 (De 

Cicco et al. 2018; R Core Team 2022). Data were 

retrieved for all stations between January 1, 2001 

through December 31, 2021. The time period was 

chosen to evaluate at least seven years of data 

before and after adoption of FIB TMDLs adopted 

from January 1, 2008 through December 31, 2014. 

A seven-year period was chosen because it aligns 

with the assessment period length used to evaluate 

compliance with water quality criteria. 

Apriori power analysis by Monte Carlo 

simulation of E. coli data sets at median variance 

indicated that the modified Mann-Kendall test 
has a power of 0.63 to detect a 40% change 

in concentration over seven years with three 

samples per year and α = 0.10 (Schramm 2021a). 

The statistical power increased to 0.79 with four 

samples per year. Here, the statistical power refers 

to the probability that the Mann-Kendall test 

rejects the null hypothesis (no-trend) when there is 

an actual trend in the data at a particular site and is 

a function of some pre-assigned significance level, 
effect size (percent decrease in concentration), 
sample size, and variance. 

In order to maximize sample size, and in 

consideration of within site variation of annual 

sampling effort, we retained stations with a 
median three or more samples per year for 

analysis. Justification for this filtering criteria is 

further explained in the limitations section of the 

discussion. The actual statistical power of the 

modified Mann-Kendall test at an individual station 
will vary based on the number of samples and 

sample variance at that station. Schramm (2021a) 

provides further discussion on implications of 

designing monitoring approaches for stakeholders 

interested in detecting smaller effects.
Mean daily streamflow data from United States 

Geological Survey (USGS) stream gages were 

downloaded from the National Water Information 

System using the “dataRetrieval” package in R. The 

TCEQ SWQM stations were linked to the nearest 

upstream or downstream USGS streamflow gage 
using the NHDPlus National Seamless database 

(Moore and Dewald 2016) and the “nhdplusTools” 

package in R (Blodgett 2018). SWQM stations 

and data without a stream gage within 4 km on the 

same stream were removed from analysis. Since 

we assessed E. coli concentrations and not loads, 

co-located streamflow data were not necessary. 
The 4 km threshold was deemed adequate to 

capture streamflow variation for flow-adjustment 
procedures based on visual inspection of gages 

and stations in an attempt to balance maximizing 

stations with streamflow data and accurate 
streamflow data.

The locations of water bodies with FIB TMDLs 

adopted from 2008 through 2014 were obtained 

from EPA Assessment, TMDL Tracking, and 

Implementation System (ATTAINS) database 

(https://www.epa.gov/waterdata/attains) using the 

“rATTAINS” package in R (Schramm 2021b). 

Water body locations and TMDL classification 
were spatially linked to the NHDPlus database and 

SWQM station data set to classify SWQM stations 

as located within or outside a TMDL water body.

Trend Analysis

Prior to assessing trends in E. coli concentration, 

data were grouped into: (1) pre-TMDL stations, 

(2) post-TMDL stations, and (3) stations without 

a TMDL (no-TMDL). Pre-TMDL stations include 

FIB and flow data prior to TMDL adoption. Post-
TMDL stations include FIB and flow data after 
TMDL adoption. The no-TMDL stations include 

stations that do not have a FIB TMDL adopted 

from 2008 through 2014. The data for sites 

without a TMDL were restricted to the seven-year 

https://www.waterqualitydata.us/
https://www.epa.gov/waterdata/attains
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period from 2015 through 2021 for appropriate 

comparison with post-TMDL stations. Stations 

that had a TMDL adopted after 2015 were excluded 

from this analysis.

We assessed the presence of upward or 

downward monotonic trends in log-transformed E. 

coli concentrations using the modified Mann-
Kendall test and Sen slope at each station (Helsel 

and Hirsch 2002; Yue and Wang 2002). The Mann-

Kendall test is a non-parametric, two-sided test, 

with trends considered upward or downward based 

on the value of the Sen Slope with a predetermined 

α of 0.1. Typically, substantial variance in E. coli 

concentration can be explained by natural changes 

in stream discharge, precipitation, and hydrology. 

However, decision-makers are more often 

concerned with human influence on changes in E. 

coli concentration. The modified Mann-Kendall 
test for trend can be adjusted to account for 

variation in streamflow by applying the test to the 
regression residuals between streamflow and E. 

coli concentration (Helsel and Hirsch 2002). 

Residuals were obtained from a Generalized 

Additive Model (GAM) of form:

where y is E. coli concentration, β
0
 is the intercept, 

x is streamflow, and ε is the error term assumed 

to be normally distributed around mean zero. tp
1
 

is a smoothing function that utilizes reduced rank 

versions of thin plate splines (Wood 2003). GAMs 

were fit using the “mgcv” package in R which 
utilizes generalized cross validation to estimate 

the optimal splines in the smoothing function 

(Wood 2011). While GAMs are increasingly used 

for water quality assessment and trend detection, 

our primary interest was to obtain the residuals 

from the model and assess the likelihood of a 

monotonic improvement in flow-adjusted E. coli 

concentrations across a wide number of sites (Beck 

and Murphy 2017; Murphy et al. 2019).

Relationship between TMDLs and FIB Trends

A binary presence-absence outcome variable 

was created for each SWQM station to indicate 

significant improvement in E. coli concentration 

based on the modified Mann-Kendall test. The 
outcome variable was coded as zero if the Sen 

slope was positive or Mann-Kendall test p-value ≥ 

           log(y) = β
0
 + tp

1
(log(x)) + ε      (equation 1)

0.1 or one if the Sen slope was negative and Mann-

Kendall test p-value < 0.1. The odds ratio of the 

outcome variable was calculated for pre-TMDL 

SWQM stations and stations without a TMDL (no-

TMDL) using post-TMDL streams as a reference 

group. This design allows comparison of SWQM 

stations before and after TMDLs are adopted, as 

well as to stations that do not have a TMDL at all. 

Odds ratios and 95% confidence intervals were 
calculated using the GLM function in R. 

Results

A total of 721 SWQM stations were included 

in the unadjusted analysis (Table 1); however, not 

all stations that had TMDLs had sufficient data to 
be included in both pre-TMDL and post-TMDL 

groups. The station sample size (n = 196) decreased 

drastically for the flow-adjusted analysis due to 
fewer stations located proximate to a USGS stream 

gage. On average, the number of sampling events 

at SWQM stations with TMDLs were higher than 

SWQM stations without a TMDL. As expected, the 

E. coli geometric mean concentrations at SWQM 

stations with a TMDL were on average higher than 

SWQM stations without a TMDL.

Trend Analysis

Of the 164 post-TMDL stations, 7.3% showed 

significant decreases in E. coli concentrations 

(Figures 1, 2; Table 2). In comparison, 11% of 

the pre-TMDL SWQM stations and 9.2% of no-

TMDL stations showed significant decreases in 
E. coli concentrations. When adjusted for flow, 
concentrations significantly decreased at 17.4%, 
10%, and 4.7% of post-TMDL, pre-TMDL, and 

no-TMDL sites, respectively. 

We report the results for flow-adjusted 
concentrations, but caution readers to limit drawing 

broad conclusions due to reduced sample size and 

possibility of selection bias. There is indication 

that geometric mean concentrations are typically 

lower at the subset of sites included in the flow-
adjusted analysis compared to the full set of sites 

in the unadjusted analysis. Since proximity to a 

USGS gage is the major filter on this data, we are 
likely biasing selection to stations near urbanized 

areas or on larger tributaries and rivers that justify 

long-term streamflow monitoring.
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Table 1. Summary statistics of SWQM stations and E. coli data (collected between 2001-2021). Total values do not 
represent the sum of the individual categories but of the total unique SWQM stations used in the analysis. Not all 
stations had sufficient data to include in both the pre-TMDL and post-TMDL categories.

SWQM Stations

(n)

Mean E. coli

Samples per Station

(n)

Geometric Mean

E. coli Concentration

(MPN/100 mL)

Geometric SD

E. coli Concentration

(MPN/100 mL)

Unadjusted Data

All Stations 721 50.03 178.81 3.04

No-TMDL 552 34.55 131.77 2.62

Post-TMDL 164 63.45 409.26 2.57

Pre-TMDL 146 45.18 766.90 3.27

Flow-Adjusted Data

All Stations 196 51.06 140.15 2.89

No-TMDL 148 40.10 97.56 2.44

Post-TMDL 46 75.70 439.59 2.37

Pre-TMDL 10 59.10 382.30 2.80

The proportion of pre- and no-TMDL stations 

with significant decreases in E. coli decreased 

after the flow adjustment procedure was applied 
(Figure 1). The proportion of post-TMDL stations 

with significant decreases in E. coli increased after 

the flow-adjustment procedure. This difference 
suggests that local changes in streamflow may have 
masked improvements in E. coli concentration 

in post-TMDL stations. However, a single-sided 

paired t-test on the unadjusted and flow-adjusted 
slopes at post-TMDL SWQM stations suggested 

an increase in mean slope when the flow-adjusted 
procedure was applied (t = 6.196, df = 45, p-value 

< 0.01). When the flow-adjustment procedure is 
applied, some individual stations shifted from 

significant decreases in E. coli concentration to 

no detectable trend (Figure 2). Again, limited 

conclusions can be drawn from the flow-adjusted 
results, but the results highlight the importance of 

the flow-adjustment procedure, particularly when 
evaluating trends at individual sites.

Relationship between TMDLs and FIB Trends

The difference in the odds of a significant 
improvement in E. coli concentrations occurring 

between post-TMDL and pre-TMDL SWQM 

stations (OR = 1.56, 95% CI [0.72, 3.49]) or 

between post-TMDL and no-TMDL SWQM 

stations (OR = 1.29, 95% CI [0.69, 2.59]) was 

statistically non-significant (Table 2). When 

adjusted for flow, the difference in odds was also 
statistically non-significant between post-TMDL 
and pre-TMDL SWQM stations (OR = 0.53, 95% 

CI [0.03, 3.45]) (Table 3). The difference in the 
odds of significant improvement in flow-adjusted 
E. coli concentrations between post-TMDL and 

no-TMDL SWQM stations was statistically 

significant (OR = 0.24, 95% CI [0.08, 0.70]). 

Discussion

This work provides an exploratory analysis 

of the effectiveness of TMDLs within Texas 
for addressing FIB impairments by comparing 

the odds of statistically significant trends. The 
results indicate that the difference in the odds that 
significant improvements in E. coli concentrations 

were observed between post-TMDL stations 

and pre-TMDL stations were statistically non-

significant. The odds of statistical improvement 
between post-TMDL and no-TMDL stations were 

also statistically non-significant. When adjusted for 
flow, significant improvements were observed in a 
high proportion of post-TMDL sites. The difference 
in the odds of improvement between the post-

TMDL and pre-TMDL station categories remained 

statistically non-significant. However, the post-
TMDL sites had statistically higher odds of E. coli 

improvements than no-TMDL sites, when adjusted 

for flow. The flow adjustment procedures indicate 
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Table 2. Cross classification table of TMDL categories and detected improvements in E. coli 

concentrations from the modified Mann-Kendall test on unadjusted E. coli concentrations.

----------------------TMDL Category----------------------

Outcome Variable Post-TMDL Pre-TMDL No-TMDL

No Improvement 152 130 501

Statistical Improvement 12 16 51

Total 164 146 552

Odds Ratio 1 1.56 1.29

95% CI — (0.72, 3.49) (0.69, 2.59)

Log Odds 0 0.44 0.25

Figure 1. Cumulative distribution of Sen slope and associated p-values from the modified Mann-Kendall test on 
unadjusted and flow-adjusted E. coli concentrations at individual monitoring stations.
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that changes in flow masked some improvements 
in E. coli concentrations over the sampled time 

period at some stations. Our expectations are 

that pre-TMDL stations would have significantly 
lower odds of improvement compared to post-

TMDL stations, if broad-scale improvements in 

water quality occurred following TMDLs. We 

attempt to account for variations in flow with the 

flow-adjustment procedure in our analysis, but it 
drastically reduced the overall sample size and 

limits the conclusions that can be drawn. Other 

confounders, such as changes in land-use, variation 

in sources, and variance in local watershed groups 

are not included in this project but discussed 

below. Overall, this provides some evidence that 

improvements in E. coli concentrations have not 
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Figure 2. Map of individual monitoring stations and associated modified Mann-Kendall 
test results for unadjusted and flow-adjusted E. coli concentrations.
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been achieved at a broad scale despite TMDL 

efforts. While the results indicate some individual 
sites have seen improvement following TMDLs, 

the odds that they occur are not any higher than 

before TMDLs were implemented.

There have been limited comprehensive 

assessments of water quality trends in Texas 

for comparison. Some coastal assessments in 

Texas point to increasing trends of water quality 

exceedances or degradation. Powers et al. (2021) 

revealed statistically increasing rates of enterococci 

bacteria exceedances at Texas recreational beaches 

over a similar timeline. These exceedances were 

correlated with population increases and sea level 

rise that might impact the effectiveness of source-
controls, such as septic systems and sanitary sewer 
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systems in coastal systems (Powers et al. 2021). 

Bugica et al. (2020) present evidence that both 

point and non-point sources were contributing to 

declining estuarine water quality and increasing 

risk of eutrophication on the Texas coastline 

between 1996 and 2016. Kuwayama et al. (2020) 

investigated trends in multiple water quality 

parameters and indices in Texas river basins and 

concluded that water quality improvements within 

the state have largely stagnated over the last 30 

years. While substantial regulatory and voluntary 

efforts have been made to address E. coli and other 

impairments in Texas, this analysis adds to the 

limited but growing evidence that improvements 

are not being achieved on a broad scale in the state.

Many of the FIB water quality impairments 

and TMDLs in the state have been in and around 

urbanized centers such as Houston, Dallas, and 

San Antonio. In 2008, the first major FIB TMDL 
effort in the state (referred to as the Bacteria 
Implementation Group, or BIG) resulted in the 

development of 72 different TMDLs and associated 
I-Plans for impaired waterbodies in the Houston 

area (HGAC 2020). Similar groups have been 

formed in San Antonio, Dallas, and Austin, Texas. 

While these groups report on some individual 

successes in implementing projects and some 

reductions in bacteria, achievements in overall 

water quality goals have not been met. The negative 

impact of urbanization and imperviousness on 

hydrologic processes and water quality is well 

established and likely contributes to limited 

observations of significant improvements in E. coli 

concentrations (Handler et al. 2006; DiDonato et al. 

2009; Mallin et al. 2009; O’Driscoll et al. 2010). 

Previous studies on fecal coliform and E. coli 

concentrations in Houston, Texas area watersheds 

indicated initial decreases in FIB concentration 

following wastewater plant improvements in 

the 1980s, which was followed by a period of no 

statistical improvements in E. coli concentrations 

coinciding with high rates of urbanization (Petersen 

et al. 2006; Desai et al. 2010). Within the Houston, 

Texas area watersheds, increased urbanization was 

associated with lower attenuation of wet-weather 

related E. coli concentration spikes, and relatively 

high E. coli concentrations under baseflow and 
stormflow conditions (compared to less developed 
watersheds), despite major improvements in point-

source discharges. Brinkmeyer et al. (2014) found 

streambed and bank sediments account for up to 

90% of daily E. coli and enterococci loads in two 

highly urbanized Houston, Texas waterbodies 

with chronically elevated FIB concentrations, 

and suggest that naturalized background FIB will 

prevent attainment of water quality goals. This 

evidence suggests that as urbanized centers grow in 

Texas, achieving water quality improvements will 

be increasingly difficult. In anticipation of continued 
land use development, improved integration of 

land-use planners and water managers is required 

to manage and plan around the interconnections 

between land and water (Stoker et al. 2022).

While substantial regulatory and voluntary efforts 
have been made to address E. coli impairments in 

Texas, we did not find broad-scale evidence that 
rates of improving E. coli concentration differ 
after TMDLs are implemented or from non-

TMDL stations. While there are specific stations 
that demonstrated improvements in E. coli 

concentrations, it is beyond the extent of this project 

to dive into site specific data. However, we do call 
on a need for further research and data collection 

to identify the implementation efforts, funding, 

Table 3. Cross classification table of TMDL categories and detected improvements in E. coli 
concentrations from the modified Mann-Kendall test on flow-adjusted E. coli concentrations.

----------------------TMDL Category----------------------

Outcome Variable Post-TMDL Pre-TMDL No-TMDL

No Improvement 38 9 141

Statistical Improvement 8 1 7

Total 46 10 148

Odds Ratio 1 0.53 0.24

95% CI — (0.03, 3.45) (0.08, 0.70)

Log Odds 0 -0.64 -1.44
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stakeholders, and other characteristics that might 

contribute to successful improvements in water 

quality. Previous studies indicate that the outcome 

of water quality planning and implementation 

efforts are a function of financial resources invested, 
stakeholder engagement, institutional capacity, 

and norms. Scott (2015; 2016) provides evidence 

that collaborative watershed management groups 

(like the BIG) can drive improved water quality 

outcomes. However, instituting a truly collaborative 

and effective watershed management effort is a 
challenge due to institutional silos, stakeholder 

perceptions, resource availability, and presence of 

cooperative networks (Lubell 2004; Imperial 2005; 

Koontz and Newig 2014).

Agricultural non-point sources such as livestock 

also contribute to FIB impairments throughout 

Texas and livestock management objectives are 

often identified in TMDL I-Plans (see HGAC 2020 
for an example), presenting additional challenges 

for water quality planning. The agricultural 

associated non-point source reductions identified 
in I-Plans rely on voluntary implementation of best 

management practices achieved through outreach, 

education, and Farm Bill financial incentive 
programs. The voluntary implementation of best 

management practices faces major barriers such as 

the economic investments required of landowners, 

and landowners’ limited trust in government 

programs and initiatives (Kay et al. 2008; Jordan 

et al. 2011; Guo et al. 2019). The mandatory 

implementation of agricultural best management 

practices is both legally and politically fraught 

(Laitos and Ruckriegle 2012). Due to the voluntary 

nature of these practices and confidentiality 
agreements with agencies, numerous knowledge 

gaps remain related to tracking and evaluating 

the effectiveness of agricultural best management 
practices implemented at the watershed scale 

(Batie 2009). 

Partially in response to these challenges, the 

EPA developed guidance for the development of 

watershed-based plans as a local stakeholder-driven 

option to identify and address water quality concerns 

(U.S. EPA 2013). Under the watershed-based plan 

concept, local stakeholders drive the identification 
of issues and desired outcomes, increasing the 

likelihood of engagement, implementation, and 

successful outcomes (Koontz and Newig 2014). 

Agencies that lead these collaborative planning 

efforts often face difficulties shedding institutional 
and bureaucratic norms and enabling the flexibility 
required for successful collaborative governance 

regimes (Biddle 2017). However, agencies can 

also add administrative capacity and financial and 
technical resources, and compel participation that 

may lead to improved outcomes (Biddle 2017; 

Bitterman and Koliba 2020). Since addressing water 

quality challenges requires agency involvement 

and funding as well as strong local watershed 

organizations, additional research is needed in 

Texas to clearly identify the challenges and capacity 

for state institutional and local watershed groups in 

developing and implementing plans and projects 

that lead to improved water quality outcomes.

Limitations

The modified Mann-Kendall test on E. coli data 

has limited power to detect trends in E. coli data 

sets at typical monitoring frequencies (Schramm 

2021a). For a station with a median population 

variance of E. coli concentration, monthly sampling 

is required to obtain 0.71 power for detecting 

a 20% change in E. coli concentration. Monthly 

sampling is the best-case scenario for most stations. 

Quarterly sampling is a more typical scenario for 

stations across the state. At four samples annually, 

a 40% change in E. coli concentration is required to 

achieve approximately the same power. However, 

for the stations in this analysis, our assumption 

is that most sites require relatively large percent 

reductions to achieve water quality standards 

(Table 1 indicates the overall geometric means 

require 67-84% reductions to meet standards, 

although individual sites will vary). The power of 

the Mann-Kendall test for detecting effects of this 
magnitude over seven years is sufficient with three 
to four samples annually.

The number of stations with adequate data 

limited exploratory analytic approaches, such as 

logistic regression, that would permit exploration 

of the influence of additional covariates. For 
unadjusted E. coli trends, 95 of the 134 stream 

assessment units with FIB TMDLS adopted from 

2008 through 2014 were included in the analysis. 

However, for flow-adjusted E. coli trends, only 

34 of 134 stream assessment units with FIB 

TMDLs were included in the analysis. SWQM 



45 Schramm, Gitter, and Gregory

Journal of Contemporary Water Research & EducationUCOWR

stations lacking a proximate stream gage, without 

adequate data samples, or with only enterococci 

data, were excluded from analysis. This sample 

size restricts extending our analysis to include 

additional explanatory covariates such as land-use, 

implementation funding, and spatial dependencies 

that could provide desired insight. The number 

of SWQM stations throughout the state without a 

proximate stream gage severely restricted sample 

size, and as noted earlier, potentially introduces 

some sampling bias in location and stream size. 

Future work may consider the use of proxies for 

streamflow (such as precipitation) which have 
substantial effect on pollutant loading, and possibly 
allow the inclusion of more SWQM stations (Sinha 

and Michalak 2016). While further insights could 

also be gleaned by assessing financial resources 
invested, the types of projects implemented, 

and stakeholder involvement following TMDL 

development (Scott 2015; 2016), this data is not 

readily available across the study area.

The shortcomings of using changes in FIB as 

a metric deserve some discussion. As noted, there 

are numerous potential sources of FIB within a 

watershed and this regional level exploratory study 

does not parse out the possible background-level 

E. coli conditions or the feasibility of reducing 

E. coli concentrations at individual sites. We do 

not know if actual human health risk from water 

quality contact has changed following TMDL 

implementation. TMDLs within Texas currently 

do not utilize microbial source tracking (MST) 

to parse out potential contributors and sources 

of FIB within TMDLs. Nationally, efforts have 
been made to quantify the risks associated with 

FIB and integrate findings in watershed decision-
making. Using FIB to assess human health risk in 

freshwater streams presents certain challenges. 

FIB can survive outside of the host and become 

naturalized in the environment effectively 
increasing baseline concentrations (Ishii and 

Sadowsky 2008). Furthermore, these FIB are not 

always host specific and may overestimate the risk 
relative to FIB originating from human sources, 

such as raw sewage, bather shedding, or treated 

effluent. The ability and desire to manage or 
mitigate non-human sources such as wildlife can 

be costly with uncertain effectiveness and limited 
impact on reducing potential risk for human health.

MST and Quantitative Microbial Risk 

Assessment (QMRA) are potential cost-effective 
frameworks that are increasingly recommended to 

assist resource managers with management practice 

selection and translation of FIB concentrations into 

human health risk (U.S. EPA 2014; Goodwin et al. 

2017). QMRA studies have consistently indicated 

that FIB from non-human and non-cattle sources 

likely result in a lower risk for a gastrointestinal 

infection and illness than from FIB resulting from 

human sources (Schoen and Ashbolt 2010; Soller 

et al. 2010; Gitter et al. 2020). The presence of fecal 

pathogens in streams, as indicated by monitoring the 

FIB concentrations, can be influenced by pathogen 
source. A management approach that relies solely 

on the concentration of FIB and not the contributing 

sources can potentially mischaracterize the human 

health risk associated with recreation in a specific 
water body. The use of MST and QMRA provides 

an opportunity for regulators and stakeholders 

to establish goals and track progress for realistic 

water quality improvements based on actual human 

health risk, as opposed to the current single water 

quality criterion.

Conclusions

Our analysis indicates that there was no 

significant difference in the odds of statistically 
significant reductions of E. coli concentration, at an 

effect size broadly relevant across sites in the state, 
between pre- and post-TMDL stations. To an extent, 

sampling sizes restrict the ability of the analysis to 

detect smaller improvements that might be identified 
as relevant to local stakeholders. However, this 

analysis supports similar published findings that 
water quality improvements have largely stagnated 

across the state. While the state’s TMDL and I-Plan 

efforts fulfill federal regulatory requirements, the 
lack of significant difference between pre-TMDL 
and post-TMDL trends suggests that further work 

is needed to identify locally successful planning 

mechanisms and build upon those efforts. It is 
likely the TMDL planning processes have evolved 

over time and space as response to administrative 

changes, stakeholder feedback, and capacity of local 

stakeholders to lead efforts. In-depth assessment of 
the processes would provide valuable insight when 

attempting to link outcomes to process. This study 
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highlights the importance of a robust monitoring 

to assess program effectiveness and linkages to 
environmental outcomes, especially in light of 

continued efforts to develop additional TMDLs to 
address other impaired streams.
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