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W
ater supply systems are integral 

elements of underground infrastructure 

and indispensable constituents for 

urban communities (Folkman 2018; Dawood et 

al. 2019a). Recurrent incidents of water main 

breaks are long-standing problems all over the 

world, causing water loss and floods, interrupted 
access to safe drinking water, compromised water 

quality, damage to the surrounding civil structures, 

disruptions to businesses, and loss of revenue 

(Harvey et al. 2014). The American Society 

of Civil Engineers (ASCE) 2017 report card 

estimated a daily water loss of six billion gallons 

due to pipe leakages, with yearly water main 

breaks totaling 240,000 in the United States. This 

water loss could support 15 million households 

per day, which equates to approximately 14% 

to 18% of treated potable water. Moreover, the 

report recorded that pipe break rates escalated by 

40% between 2012 and 2018 in North America 

(ASCE 2017). Consequently, the American Water 

Works Association estimated one trillion dollars is 

required for U.S. water infrastructure over the next 

25 years (AWWA 2012). 

The image is not different in Latin America, 
where it enjoys an abundance of water resources. 

The region includes some of the largest lakes in the 

world, such as Titicaca in Peru, as well as four of the 

world’s 25 largest rivers. Additionally, the Amazon 

Basin supplies 20% of the total runoff of the world’s 
fresh water. However, in most of Latin America’s 
big cities, more than 50% of the treated water is lost 

due to leaky pipes. This rate might escalate up to 

90% in some congested cities (Barlow and Clarke 
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Abstract: The increased incidences of pipe breaks worldwide are posing a serious threat to potable 
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spending. This research paper aims at developing an assessment framework for water systems, as well 
as modeling the failure phenomena toward sustainable management of underground infrastructure. The 
city of El Pedregal in Peru was chosen to exemplify the methodology of the research due to the rapid 
pace of urbanization and growing economic activities in the region, which make water infrastructure even 
more critical. The framework is based on the application of modeling techniques stemming from statistical 
regression analysis (RA) and 3D schematic representation. First, the influential factors that lead to the 
deterioration of the WDNs are determined. Second, the RA technique is leveraged to evaluate and model 
the failure rate through consecutive simulation operations and a 3D surface plot. Finally, the efficacy of the 
model is investigated using different performance metrics, in conjunction with a residual analysis scheme. 
The validation results revealed the robustness of the model with R-squared (R2) and the sum of squares 
error (SSE) of 0.9767 and 0.0008, respectively. The developed model is a predictive tool that can be used 
by municipal engineers as a preemptive measure against future pipeline bursts or leaks. 
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2007). Faced with this litany of growing risk of pipe 

failure in Latin America, the burden has increased 
on water utilities to ensure safe and reliable water 

services (Dawood et al. 2019a). This research work 

is relevant to water resources management in Latin 
America because of the significance of prioritizing 
infrastructure investments as an engine for growth, 

as well as saving money and water resources 

in this developing world. This emphasizes the 

need for condition assessment models capable of 

assisting the decision-makers in the prioritization 

of replacement and/or rehabilitation procedures of 

underground water systems (Kleiner and Rajani 

2001a; Dridi et al. 2009), especially during the 

economic recession that minimized the funding 

policies. 

Substantial efforts have been found in the 
literature to evaluate the water pipe deterioration 

and model its risk of failure. Many of these efforts 
adopted statistical-based approaches, while others 

focused on artificial intelligence and soft computing 
methods to develop failure prediction models. 

Statistical models are created from historical 

data that link pipe attributes, operational factors, 

environmental factors, and frequencies of pipe 

breaks (Kleiner and Rajani 2001b). Such models are 

based on collecting long-range data pertaining to 

past pipe bursts and applying the regression analysis 

(RA) techniques to process the data (St. Clair and 

Sinha 2012). Generally, statistically-derived models 

are classified into two categories: deterministic and 
probabilistic. Statistical deterministic models are 

known as time-dependent models. Examples of 

these models can be found in (Shamir and Howard 

1979; McMullen 1982; Walski and Pelliccia 1982; 

Jacobs and Karney 1994). Whereas, probabilistic 

statistical models utilize the probability theory 

and uncertainty to estimate the likelihood of pipe 

failures. Examples of such models may be found in 

(Jeffrey 1985; Constantine et al. 1996; Mavin 1996; 
Deb et al. 1998).

The objective of this paper is to develop a 

methodology for the deterioration evaluation 

of water distribution networks (WDNs), in 

addition to modeling their failure rates. The 

proposed methodology is grounded in the RA 

technique by utilizing the embedded statistical 

package of MATLAB © R2019b.

Background

Regression Analysis

RA is a set of statistical procedures for analyzing 

and modeling the relationships between two or more 

variables. Hence, predicting the response variables 

from predictor variables. The most common form 

of this relationship is linear regression, which is 

expressed in Equation (1) (Chatterjee and Hadi 

2012):
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The generic form of this relation is attained 

when there is more than one predictor variable, and 

the generated model is called a multiple regression. 

This relationship is presented in Equation (2) 

(Kutner et al. 2005).
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Generally, the regression coefficient values β
0
, 

β
1
, β

2
, etc., in Equation (2) are unknown and must 

be calculated from the available data. Because 

no previous information exists about the form of 

regression relationship (e.g., linear or curvilinear) 

and the appropriate predictor variables, it is quite 

essential to analyze the data in order to develop a 

proper regression model. 

There exist several methods to check the forms 

of linearity by observing the curvatures in different 
plots, such as looking at the scatterplot of residuals 

as opposed to the fitted values. Moreover, checking 
the scatterplot of residuals against each predictor. If 

the scatterplot proposes a curvilinear relationship, 

it means this is a polynomial regression model. The 

mathematical definition of this model is postulated 
in Equation (3) (Kutner et al. 2003):
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where, h is the degree of the polynomial equation, 

and the relationship is called quadratic when h = 2, 

cubic when h = 3, quartic when h = 4, and so forth. 

Although the polynomial regression fits a non-
linear relationship between the response variable 

and the predictor variable, it is recognized as a 

linear regression model.
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Literature Review

Several endeavors have emerged recently as a 

step toward the evaluation and modeling of water 

pipe failure rates using different statistical and 
machine learning techniques. For example, in the 

statistical modeling of water infrastructure, Wang 

et al. (2009) proposed five multiple regression 
models for the evaluation of break rates in the 

water supply system, after considering a multitude 

of factors (i.e., pipe diameter, length, material, 

year of installation, and cover depth). Asnaashari 

et al. (2009) applied multiple regression, together 

with Poisson regression, to develop two failure 

prediction models based on ten years of historical 

data. They then compared the performances of 

the two models and found that the Poisson model 

revealed superior prediction results. In the artificial 
neural networks (ANNs) domain, Sattar et al. 

(2019) constructed an extreme learning machine 

(ELM) model to forecast water pipes’ failure and 
to optimize maintenance and/or rehabilitation 

operations. Notwithstanding the high accuracy of 

the ELM model, its practicality was limited due to 
missing pipe break records. Dawood et al. (2019b) 

leveraged the ANNs and pattern recognition 

techniques to predict the risk of water quality 

failure in Peru. Christodoulou et al. (2010) trained 

an ANNs model, then analyzed the risk associated 

with buried pipes via a survival analysis approach. 

In the fuzzy logic modeling, Fayaz et al. (2018) 

introduced a hybrid approach through the fusion 

of the Kalman filter and the Hierarchical Fuzzy 
Logic. Their approach aimed at improving the risk 
assessment in the water piping system. Malinowska 

(2017) integrated the geographic information 

system (GIS) and a fuzzy inference system (FIS) to 

predict the pipeline failure hazards in a mining field. 
The model validation showed a good correlation 

between the predicted and observed results. Li and 
Yao (2016) used the Analytic Hierarchy Process 
(AHP), in conjunction with fuzzy logic to estimate 

the risk of failure of long water mains. In the 

boosting algorithms applications, Winkler et al. 

(2018) designed a boosted decision tree model 

that is based on machine learning algorithms to 

address the deterioration and failure mechanisms 

in WDNs. Later, the model performance was 
evaluated through confusion matrices and receiver 

operating characteristic curves. Some researchers 

combined the statistical and machine learning 

techniques to develop their methodologies. For 

instance, Fahmy and Moselhi (2009) presented a 

framework that involved the multiple regression 

technique, multilayer perceptron ANNs, and 

general regression neural network to predict the 

remaining useful life of water pipes in North 

America. Their model was designed on the basis 

of several factors, including physical, mechanical, 

operational, and environmental factors. Tabesh et 

al. (2009) incorporated three data-driven modeling 

techniques, i.e., ANN, neuro-fuzzy systems (NFS), 

and multivariate regression (MVR), to assess the 

risk of failure of water mains and mechanical 

reliability. The ANN model outperformed the NFS 

and MVR models in assessment capability and 

performance. Najjaran et al. (2004) developed 

a fuzzy expert system capable of modeling 

the deterioration of metallic pipes based on 

surrounding soil properties. Their system was 

built using expert knowledge and field information 
and through the fusion of linear regression and 

FIS. Aydogdu and Firat (2015) combined three 

machine learning techniques (least squares support 

vector machine, feed-forward neural network, and 

generalized regression neural network) to develop 

a methodology for estimating the failure frequency 

in water infrastructure. These studies mainly 

focused on the computational modeling of breaks 

and risk of failure. Nevertheless, a 3D interactive 

representation that reveals the severity of failure 

in WDNs was never performed. Therefore, 

the intellectual contribution of this study is to 

bridge the gap by addressing the aforementioned 

limitation using simulation and RA.

Study Area

In order to recognize the failure patterns and 

develop the water mains failure model, seven years 

of historical data related to pipe characteristics and 

breakage rates were obtained from the WDNs of 

the city of El Pedregal, Peru. Figure 1 shows the 

geographical location of this city on Google Earth. 

El Pedregal is a city in the Arequipa Region in 

southwestern Peru with elevation 1,410 m above 

sea level. It is located 70 km west of the city of 

Arequipa in the arid coastal plain of Peru. The land 

in that district is partially for irrigated agriculture 
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and the rest for desert vegetation. According to 

the 2017 census, the city had 44,264 inhabitants, 
showing an increase in population by more than 

double since 2007. The city of El Pedregal makes a 

unique case study because of the following reasons: 
1) rapid increase of urbanization as a result of rural-

urban migration; 2) growing economic activities 

in the region that promote social welfare; and 3) 

criticality of water infrastructure in this developing 

region, where the majority of population live 

in an extremely water scarce environment. The 

growing population and the rapid pace of urban 

sprawl has hindered the municipalities to provide 

infrastructure and services to the growing number 

of residents. Hence, the investment in water 

infrastructure is quite crucial as it is the engine for 

growth in the region (The World Bank 2018).

The economic prosperity in the Arequipa Region 

is the driving force behind the population growth, 

especially after implementing the Majes Irrigation 

Project, which has transformed 15,000 hectares of 

the desert to fertile land. The area is projected to 

receive new developments, such as the new dam 

that will be constructed in the second phase of the 

 

 

Figure 1. Study area location on Google Maps.

project in order to expand the area of irrigated land 

and boost the region’s profit through the export-
oriented agribusiness (Stensrud 2016).

The water supply system of El Pedregal was 

constructed in August 2012. Figure 2 illustrates 

laying the Polyvinyl Chloride (PVC) pipes as part 

of the construction process in El Pedregal. The 

main network consists of 6,482 m of PVC pipes 
with diameters ranging from 110 mm to 500 mm. 

In contrast, the secondary network has 11,129 m of 

PVC pipes with diameters ranging from 63 mm to 
90 mm. The pipe characteristics of both networks 

(i.e., primary and secondary) were collected, 

classified, and analyzed. A sample of the obtained 
data is depicted in Table 1.

Objectives and Methodology

This paper addresses two substantial issues 

pertaining to the management of urban water 

networks, namely, the deterioration modeling and 

failure frequency assessment. To highlight these 

issues, it is imperative to study and determine 

the factors that contribute to pipe deterioration, 
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as well as designing a system capable of 

assessing and modeling the pipe failure rate. The 

proposed methodology encompasses several 

steps commencing from the data collection until 

achieving the study objective of estimating the 

failure rate. The overall flow diagram of the research 

 

Figure 2. Water networks construction in El Pedregal.

Table 1. Sample of the collected data.

Diameter 

(inch)

Thickness 

(inch)

Serie 6.6 

(Class15)

Thickness

(inch)

Serie 10 

(Class10)

Thickness 

(inch)

Serie 13.3 

(Class7.5)

Thickness 

(inch)

Serie 20 

(Class5)

2.48 0.17 0.12 0.09 0.06

2.95 0.21 0.14 0.11 0.07

3.54 0.25 0.17 0.13 0.09

4.33 0.30 0.21 0.16 0.11

5.51 0.39 0.26 0.20 0.14

6.30 0.44 0.30 0.23 0.16

7.87 0.55 0.38 0.29 0.19

9.84 0.69 0.47 0.36 0.24

12.40 0.87 0.59 0.45 0.30

13.98 0.98 0.67 0.51 0.34

15.75 1.10 0.75 0.57 0.39

17.72 1.24 0.85 0.64 0.43

19.69 1.37 0.94 0.71 0.48

methodology is displayed in Figure 3. It includes 

four major phases: variables selection, model 
building, data analytics, and model application.

In the first phase, data on both the main and 
secondary networks over a period of seven years 

are collected. Data are divided into two sets; the 

first set is for building the model and setting its 
various parameters, and the second set is for model 

validation and testing its robustness to estimate the 

output variables. This is followed by identifying 

the factors (variables) that mostly contribute to the 

networks’ deterioration, as well as selecting the 

predictor and response variables from El Pedregal’s 

archived data. The predictor variables are specified 
to be the pipe diameter and thickness, while the 

response variable is identified as the failure rate.
The second phase involves building and 

designing the model architecture. Numerous 

forms of the RA models are defined in this phase. 
These exemplify the simple linear regression, 

multiple regression, and polynomial regression. 

After simulating and analyzing the data, a scatter 

plot is generated automatically to check the forms 
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Figure 3. Overall flowchart for pipe failure estimation.

of linearity. This graph also determines the best 

fit model and provides a prediction of the pipe 
failure rate. Figure 4 displays the regression model 

building.

In the data analytics phase, different diagnostic 
checks are implemented to investigate multiple RA 

scenarios and interrelated functions of the proposed 

model. In this concern, the statistical significance 
of the assessed relationships is computed, which 

signifies the degree of confidence that the actual 
relationship is close to the assessed relationship 

(Elwakil 2017). Hence, the model is tested against 

four statistical metrics to underscore the goodness 

of fit and to ensure its robustness. These metrics 
comprise R-square (R2), adjusted R-square (Adj 

R2), the sum of squares due to error (SSE), and 

root mean squared error (RMSE). The goodness 

of fit of the model is determined according to 
the highest R2 and Adj R2, and the least SSE and 

RMSE. Additional residual graphs are conducted 

to corroborate the efficacy of the proposed model. 
In the fourth phase, the model that satisfies the 
statistical test conditions and the residual analysis 

is chosen as the best model, which will be applied 

later for the assessment and modeling of water 

system failure. Next, a 3D schematic representation 

was created for the selected model.

Model Development and Results 

The previously described phases of the 

regression model (shown in Figure 3) were 

implemented in MATLAB © R2019b by utilizing 

 

 

Figure 4. Data fitting using regression analysis.
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the regression fitting Toolbox. First, the predictor 
variables (pipe diameter, thickness) and the 

response variable (pipe failure) were fed to the RA 

machine. Subsequent to processing and simulating 

the introduced data, a scatter plot was produced, 

then tested for the form of relationship, which 

indicated a positive linear relationship between the 

two predictors (diameter, thickness) as shown in 

Figure 5. However, the statistical analysis results 

revealed a negative linear relationship between 

the response variable (failure rate) and each of the 

predictors.

Since there exist two predictor variables, and 

after checking the function’s pattern, the multiple 

regression function was employed to fit the 
data. Different multiple regression models were 
generated and statistically tested. These tests 

are conducive to assess the goodness of fit and 
opting for the best fit model. Several diagnostic 
criteria were computed and compared, as well 

as the interactions between a proliferation of 

parameters, which culminate in choosing the best 

model. Consequently, the best possible data fitting 
scenarios were determined in accordance with 

the highest R2 and Adj R2 and the lowest SSE and 

RMSE. The statistical analysis results reflect that 
R2 is 0.9767, Adj R2 is 0.9745, SSE is 0.0008, and 

RMSE is 0.0113. Since all four criteria delivered 

satisfactory results, the best regression model was 

selected. The mathematical definition of this model 
is presented in Equation (4):

                y = -0.069x
1
 - 0.048x

2
 + 0.032            (4)

where, x
1
 is the pipe diameter, x

2
 is the thickness, 

and y is the corresponding water pipe failure. In 

addition, a 3D visualization scheme was extracted 

for the optimal model, as showcased in Figure 6.

 

 

Figure 5. Relationship between diameter and thickness.

Furthermore, a residual analysis was carried 

out on the developed model to validate numerous 

hypotheses related to the model building; such 

hypotheses encompass homoscedasticity, normality 

of the error distribution, and lack of correlation. 

The first hypothesis states that the deviation from 
the regression line should be the same for all X 

values, which could be validated by generating the 

residuals plot of the failure model, as represented 

in Figure 7. Analyzing this figure demonstrates that 
approximately all the residuals have tendencies 

to be constant. Therefore, the outcomes of this 

hypothesis are deemed reasonable. The normality 

of the error distribution that specifies departures 
from normality was conducted. Examining the 

probability of normal distribution reveals no 

significant errors or notable outliers. Thus, the 
proposed model looks sound under this hypothesis. 

Finally, the lack of correlation measures the 

independency of error around the regression line. 

Figure 7 shows that the positive residuals and the 

negative residuals are symmetrically distributed 

around zero, which is confirming once again the 
coherency of the pipe failure model. In cases where 

the residual analysis does not indicate that the 

model hypotheses are satisfied, it often proposes 
solutions in which the model can be modified and 
rebuilt in order to attain better outcomes.

Conclusions and Future Studies

This paper developed a regression-based model 

to estimate the level of failure in water supply 

systems. Following the data collection from the city 

of El Pedregal in Peru, numerous diagnostic checks 

were conducted to test the interactions between 

manifold variables and algorithms. After fitting the 
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Figure 6. 3D surface presentation. This Figure indicates that the likelihood of water pipe failure 

increases as the pipe diameter and/or thickness decreases.

regression functions and generating a scatter plot, 

various multiple regression models were produced 

and statistically tested. The models’ performance 

was compared against several evaluation criteria, 

which revealed promising results. The optimum 

model was selected since it achieved the highest 

R2 and Adj R2 of 0.9767 and 0.9745, respectively, 
and the least SSE and RMSE of 0.0008 and 0.0113, 

respectively. A 3D visualization plot was created 

automatically and the model was validated via a 

residual analysis scheme in which the outcome 

proved to be satisfactory and sound. Despite the 

high performance of the proposed method, there 

exist some limitations, as the model is designed 

only for PVC pipes; consequently, it cannot model 

the deterioration or assess the failure rates of 

other water pipes. This research contributed to the 

body of knowledge by mathematically modeling 

the water pipe failure with respect to the pipe 

diameter and thickness, in addition to creating a 

3D visualization representation that can be easily 

 

Model’s 

 

Residuals 

Figure 7. Model’s residuals plot.

perceived. The 3D surface plot reveals that pipe 

failure rates in El Pedregal will increase as the 

diameter and/or thickness decrease. In other 

words, a water pipe with larger diameter and/or 

thickness is less prone to failure and more likely 

to resist breakages.

Some of the suggested future topics may cover 

the limitations of this research by investigating the 

deterioration phenomena of other pipe materials, 

such as cast iron, ductile iron, and asbestos cement. 

Thus, creating new models that evaluate the level 

of failure in these pipes. Others may explore the 

automated monitoring systems using Smart Pipes, 

Intelligent Pigs, and Robotics for a more coherent 

condition assessment of the water system. Other 

research can investigate the Augmented Reality 

approach that offers a human-computer interface 
for real-time visualization of anomalies and 

defects in water pipelines. Moreover, an integrated 

predictive model could be accomplished by fusing 

and linking data streams from multiple remote 
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sensing technologies and sensors, such as the 

Ground Penetrating Radar (GPR), radiographic 

methods, and infrared sensors that can detect 

the pipe deterioration and locate its leakage in a 

nondestructive way. This predictive model can be 

merged with GIS to generate highly accurate maps, 

hence allowing a de facto visualization of the 

network risk of failure. These applications could 

reasonably minimize the disruptions to roads and 

businesses, as well as, reduce the cost and time 

incurred.
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