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Abstract: Parts of the Southwestern United States report arsenic levels in water resources that are above
the United States Environmental Protection Agency’s current drinking water limits. Prolonged exposure
to arsenic through food and drinking water can contribute to significant health problems including cancer,
developmental effects, cardiovascular disease, neurotoxicity, and diabetes. In order to understand exposure
risks, water sampling and testing have been conducted throughout Arizona. This information is available to
the public through often non-overlapping databases that are difficult to access and in impracticable formats.
The current study utilized a systemic compilation of online databases to compile a spreadsheet containing
over 33,000 water samples. The reported arsenic concentrations from these databases were collected from
1990-2017. Using ArcGIS software, these data were converted into a map shapefile and overlaid onto a
map of Arizona. This visual representation shows that arsenic levels in surface and ground water exceed
the United States Environmental Protection Agency’s drinking water limits for many sites in several counties
in Arizona, and there is an underrepresentation of sampling in several tribal jurisdictions. This information is
useful for water managers and private well owners throughout the State for determining safe drinking water
sources and limiting exposure to arsenic.
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recommend emergency corrective  measures

rsenic contamination represents a growing
Apublic health concern in numerous

countries across the globe (Mukherjee et
al. 2006; Uddin and Huda 2011; Alarcon-Herrera et
al. 2013; Huang et al. 2015; Ayotte et al. 2017; Hsu
et al. 2017; Malloch et al. 2017; Saint-Jacques et
al. 2018; Zeng et al. 2018). It has been responsible
for some of the most devastating natural mass
poisoning incidents in recent times, according to
the World Health Organization (WHO) (Flanagan
et al. 2012), and represents a looming threat as
concerns about water security and water shortages
increase (IPCC 2013, 2014). Its potency for
damage to health prompted the WHO in 1999 to
lower maximum contaminant levels (MCL) from
50 pg/L or parts per billion (ppb) to 10 ppb and
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be taken in waters that exceed 50 ppb (Smith et
al. 2000). Following this policy change, most
governments adopted similar regulations globally
(Shankar et al. 2014; Nigra et al. 2017).

Arsenic exists in two common forms,
organic and inorganic, and this characteristic
determines its toxicological potential (Dani
and Walter 2018). Organic forms of arsenic,
such as monomethylarsonic acid (MMA) and
dimethylarsinic acid (DMA), are commonly
found in aquatic fish and other consumable sea
products and are generally viewed as relatively
non-toxic (Husain et al. 2017), although this
view is under debate (Moe et al. 2016; Wei et al.
2017). This non-toxic designation is attributed to
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the fact that MMA and DMA are both metabolic
products produced by the liver during natural
arsenic metabolism, and ingestion of these
products typically results in normal excretion
by the organism (Vahter and Concha 2001).
Inorganic arsenic, in relation to contamination and
toxic health effects, is broken into its pentavalent,
arsenate, and trivalent, arsenite, forms (Thomas et
al. 2001). Both arsenate and arsenite contaminate
ground and surface drinking water sources and
can be taken up by plants, such as rice (Hughes
et al. 2011; Chung et al. 2014). Inorganic arsenic
can be metabolized by organisms; however, it
bioaccumulates in various organs such as the liver,
kidneys, heart, and lungs causing progressive
damage with chronic exposure (Arslan etal. 2016).
Arsenic is recognized as a potent carcinogen
and is associated with vascular damage, which
can lead to congestive heart failure (Martinez
et al. 2011; Moon et al. 2012). Additionally,
studies have demonstrated that arsenic acts as a
potentiating agent with other toxins exacerbating
their detrimental effects (Singh et al. 2011; Tyler
and Allan 2014).

While arsenic’s previous use in industry poses a
possible legacy contaminant in parts of the globe,
its application has been diminishing and its natural
occurrence represents the primary environmental
source to contaminate air, food, and water resources
(Ribeiro et al. 2000; Mandal and Suzuki 2002). For
example, tube wells drilled in Bangladesh in the
1960s and 1970s by the United Nation’s Children
Fund (UNICEF) went deeper than previously
drilled wells to access cleaner water sources not
contaminated by microbial organisms (Sen and
Biswas 2013); deep wells have provided arsenic
laden water to parts of Vietnam for more than a
hundred years (Winkel et al. 2011). The aquifers
in these deeper wells have a different surrounding
geologic structure, and the mineralite matrix was
associated with heavy arsenic concentrations,
which led to subsequent contamination of these
new wells (Hoque et al. 2017; Rahman et al.
2018). A report by the United States Geological
Survey (USGS) in the early 2000s revealed
similar geologic conditions which could lead to
contamination of water by naturally occurring
arsenic across many parts of the United States
(Welch et al. 2000). A combination of rich iron-
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sulfur bearing rocks, agricultural backgrounds, and
extensive mining history increases the potential for
arsenic contamination in the Southwestern United
States. Mining operations in the Southwest result
in increased risk of contamination by disturbing
underlying bedrock and iron-sulfur rocks; as ore
is brought to the surface, this increases the surface
area of these rocks, which may increase arsenic
mobilization into the environment (Focazio et al.
2000; Etschmann et al. 2017). Waste and tailing
piles represent an added source for contamination,
increasing the potential for concentration of arsenic
contaminants (Lim et al. 2009; Larios et al. 2012;
Laird et al. 2014).

Because of water treatment to meet drinking
water standards, arsenic in Arizona does not pose
a significant concern for urban centers; however,
much of the state is designated as rural or frontier
regions (Gordon 1987; U.S. Census Bureau 2010).
Citizens in these regions still rely on private wells
or water hauling practices, which are unregulated
and unmonitored, and are vulnerable to unchecked
contamination by arsenic. Both the Verde Valley
and the Hopi Tribe have faced litigation and legal
ramifications for exceedances in their water from
arsenic (Foust et al. 2004; Wildeman 2016). For
these reasons, numerous separate studies and
databases are publicly searchable, and show arsenic
levels across the state (see references- National
Water Quality Monitoring Council (NWQMC);
U.S. Environmental Protection Agency (USEPA)).
These databases are now combined within the
NWQMC site, and the USEPA site is no longer
available. However, a recent study investigating
regional water quality on the Navajo Nation
in Arizona demonstrates that the use of these
databases, combined with new sampling, can
provide information regarding water quality such
as arsenic concentrations above the regulatory
drinking water limit across a landscape (Hoover
et al. 2017, 2018; Jones et al. 2020). The Navajo
Nation represents the largest contiguous Native
American reservation in the United States, has an
extensive history of environmental injustice and
environmental contamination issues associated
with uranium mining, and is primarily rural or
frontier in designation (Lewis et al. 2017). The
purpose of this paper is to combine water quality
and arsenic concentration data on the water in
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Arizona from various databases and scientists into
a single location. This information is important for
identifying which populations and communities
are at risk of consuming arsenic contaminated
drinking water, especially for those reliant on
unregulated sources.

Methods

Retrieval of Datasets

Datasets were collected through the methods
summarized in Figure 1. Data were downloaded in
May 2017 from https://ofmpub.epa.gov/storpubl/
dw_pages.querycriteria, which is no longer
available through the USEPA online sites, and
https://www.waterqualitydata.us/portal/, ~ where
the USEPA data may have now migrated. Search
criteria for the geographic location was entered
as Arizona and then more specifically broken
down by county and or tribal lands. Data from all
Organization Types and Station Types were used.
The Date Range was set as January 1, 1990-May 1,
2017. Water was chosen as the “Activity Medium”
and all “Intents and Communities” were used.
“Arsenic” and all synonyms were chosen as the
“Characteristic” and all “Warehouse Data Sources”
were used. Once the results were generated, they
were downloaded and converted into Microsoft
Excel files.

The location information and corresponding
arsenic levels had to be combined into a single
file for results downloaded from https://www.
waterqualitydata.us/portal/. To do this conversion,
the Monitoring Location Identifier was matched on
each of the documents. A copy of the Results file
was saved in order to avoid corrupting the original
information. The sample type (groundwater or
surface water), latitude, and longitude were then
added to the copy of the Results file for each
individual county. The date of the sample was also
changed to a recognizable date format using the
formula =DATAVALUE.

Condensation by County

After combining the Water Quality Database site
location and arsenic level information into single
files for each county, all of the information for
each county from both websites was merged into
a single Excel document that was used to create
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the shapefiles in ArcGIS. In order to ensure quality
was maintained, the background color of six to ten
line items was changed per county. Random spot
checking was also conducted by comparing the
merged file to the originally downloaded data.

Organization and Formatting

When the county samples were merged into
a single Excel document, the website containing
the original information was included for each
sample site. Additionally, the location information
for each sample was included, specifically the
county where the sample was taken, latitude,
longitude, and whether the sample was taken from
groundwater, surface water, or unspecified. The
date the sample was taken, the original numerical
value of the concentration of arsenic, the original
units, and the converted value and units were also
included. Each sample was converted to ppb. After
all of this information was entered, the file was
saved in comma-separated value (CSV, comma
delimited) format.

Conversion into Shapefiles

ArcGIS version 10.4 software was used to make
the shapefiles. The CSV file was converted into
an XY table with Longitude as X and Latitude as
Y (this information comes from ESRI technical
support: How to import XY data tables). The XY
table is then uploaded as a shapefile to the map
of Arizona. The map of Arizona was loaded from
the ESRI online database and tribal reservations
were delineated (Figure 2; CAPGISadmin 2017;
Central_Arizona_ Project 2019; Esri 2020; MPD
GIS 2020). Once loaded as a shapefile, it was
converted to a layer. The symbols were identified
by quantity and broken up into the following three
categories based on concentration in ppb: 0.0-
10.0, 10.1-100.0, and greater than 100.0. The color
became darker and the size larger as the value
increased.

Upon completion of the map of the entire state
of Arizona, there were 33,099 samples represented.
The previously listed information (see above) per
sample is viewable in the attribute table for the
newly created layer in ArcGIS (http://www.arcgis.
com/home/item.html?id=191c7abbce0445409a19

0522ccb3db2c).
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b. County: Each county individually
Organization, Station & Project (Option 1)
a. Organization Type: Select All
Station Type: Select All
Date, Administrative Filters
a. Sampling Activity Filters
i. Date Range 1: Jan I,
1990-May 1,2017
Activity Medium: Water
6. Activity Intent and Community Sampled:
Select All for both categories
7. Characteristic
a. Characteristic Search
i. Type in “arsenic”
ii. Select +Arsenic
(synonyms) from results
8. Characteristic Group Type
a. Left as default
9. Data Download Report
a. Warehouse Data Source(s):
i. ALL/Both datasets
(Entire Warehouse)
10. Submit Query: Result Download

N
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\

( https://www.waterqualitydata.us/portal/ )

Y

N

. Location (Place)

7. DOWNLOAD

/ KG File format: Comma-separated

~

a. Country: United States of America
b. State: Arizona
c. County: Each county individually
Site Parameters
a. Site Type: All
b. Organization ID: All
Sampling Parameters
a. Sample Media: Water (NWIS, STEWARDS,
STORET) and water (STEWARDS)
b. Characteristic Group: Inorganics, Major,
Metals
c. Characteristics: Arsenic (NWIS,
STEWARDS, STORET)
d. Date range — from: 01-01-1990
e. to:05-01-2017
Data Source
a. Select database: BIODATA, NWIS,
STEWARDS, STORET
Select data to download: Site data only AND Sample
results (narrow)
*+#* Both the Site data and the sample results
have to be downloaded because one contains
the Site name and latitude and longitude
information while the other contains the Site

name and arsenic levels.

Figure 1. Flowchart demonstrating the procedures used for querying each website for downloading data regarding
arsenic measurements in ground and surface water in Arizona.

Data Analysis and Reporting

In order to determine the number of samples
per county with a measured arsenic concentration
over 10.0 ppb, the 33,099 samples were separated
by county and broken up further by concentration
level. The number of samples with an arsenic
concentration of 10.1 ppb or above was divided by
the total number of samples reported for that county
in order to get the percentage of reported samples
over 10 ppb using the formula below where P% is
percentage, X the portion of total samples in the
concentration category, and Y the total number of
samples in the category (equation 1).
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P% X
(M

100 Y

Similar analysis was also conducted for arsenic
levels on tribal lands. These analyses are reported
in further detail in the Results section.

Results

The compilation of data from 33,099 ground
and surface water samples provides a clear picture
of the extent of known arsenic levels throughout
the state of Arizona (Figures 3-6; surface water,
groundwater, and sites where the water source
was not specified, respectively). Sixty-four %
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Figure 2. Map of Arizona with tribal names and jurisdictions outlined.
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(21,194 samples) of the total samples taken did not
specify where they were from, while 6.4% were
from groundwater and 29.6% were from surface
water. Many samples came from repeated site
sampling at the same location over the course of
the timeframe evaluated; therefore, the number of
sites represented on the map appears to be fewer
than the total sampled, especially for the surface
water sites. For the sites where the type of sample
was “unspecified,” the information may have been
recorded when the sample was taken, but has not
been made publicly available. For several of these
unspecified sites, samples were taken from areas
with little or no surface water, so it may be possible
to assume the sites were sampled from groundwater
resources. Any area with no indication of arsenic
sampling on the maps is a result of there being
no data indicated in the searched databases for
GIS coordinates in that region. Regions where
there are no shapes on the maps either have not
been sampled or samples were not provided to the
queried databases suggesting that further sampling
may be useful especially for the evaluation of
groundwater.

Across counties, many ground and surface
water samples demonstrated arsenic levels above
the regulatory safe drinking water limit of 10 ppb
as put forth by the USEPA. The results indicate
that 20.7% of all the samples taken throughout the
state measured over 10 ppb for arsenic in the water
(Table 1). More than 40% of samples from Pinal
and Yavapai Counties have arsenic concentrations
over 10 ppb (Table 1). The county with the overall
lowest concentrations is Greenlee. Several of the
tribal jurisdictions also had samples that exceeded
10.0 ppb, especially Fort McDowell. For the most
part, sampling on tribal lands is limited and in
some cases is either non-existent or unavailable
through the searched public databases (Table 2).

Discussion

The geologic profile and climate of Arizona
lend itself to naturally occurring valuable
mineral deposits and fertile agricultural lands.
Unfortunately, both of these factors plus the large
and primarily rural nature of Arizona contribute
to issues securing clean water resources that are
safe for human consumption (Cordy et al. 2000).
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The arsenic water quality information represented
in the USEPA and National Water Quality
Monitoring Council databases demonstrated
water resources that exceeded the USEPA MCL
of 10 ppb were widely distributed across the state,
with most exceedances located in the central and
southern regions (Figures 3-6). The frequency of
contaminated wells in Arizona at 20.7% exceeded
the national average of 12%; however, several
states including Illinois, Maine, Minnesota, and
Nevada have a high percentage of exceedances
similar to the levels found in Arizona (Uhlman
et al. 2009; Ayotte et al. 2011, 2017). The USGS
points to the geologic substrate across Arizona
as the explanation for an elevated background
concentration of arsenic in water resources, which
explains the statewide contamination (Ryker 2001).
Areas that have experienced previous mining or
significant ground disturbances, including deep
water exploration, demonstrate clusters of elevated
arsenic concentrations exceeding drinking water
regulatory limits, such as those seen in Yavapai
and Pinal Counties (Anning et al. 2012).

All of the maps demonstrate a lack of
information regarding sampling of arsenic levels
in water resources within most tribal jurisdictions.
This lack of representation in these databases
does not demonstrate an absence of arsenic in
water resources across these regions, but rather
an absence of either sampling by federal agencies
and/or a lack of centralized information being
publicly available. These Native American Nations
are sovereign entities recognized and separate
from the federal government that maintain their
own utility services, including water monitoring
programs (U.S. Department of the Interior 2006;
Washington and van Hover 2011). The most
sampling has occurred on the Navajo and Hopi
lands, where water quality issues, especially
related to widespread arsenic and uranium
contamination occur (Brugge and Gobble 2002;
Hoover et al. 2017, 2018). Unfortunately, while
water quality information exists for some of these
Nations (TerraSpectra Geomatics et al. 2000;
Orescanin et al. 2011; Hoover et al. 2017, 2018),
for many, if the data exist, it requires strict approval
by the various tribal governments to publish them
in a public location (Kickingbird and Rhoades
2000). An added barrier to such publication is the
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Figure 3. Map of Arizona representing arsenic levels in ppb for samples taken from groundwater resources between
1990 and 2017. Increasing circle size indicates higher arsenic concentrations.
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Figure 4. Map of Arizona representing arsenic levels in ppb for samples taken from surface water resources between
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Figure 5. Map of Arizona representing arsenic levels in ppb for samples that did not have the type of water resource
provided and were taken between 1990 and 2017. Increasing triangle size indicates higher arsenic concentrations.
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hesitation of some tribal governments to associate
a location identification with any specific problem,
which may lead to social or local stigmatization
for continued monitoring (Sharp and Foster 2002;
Manson et al. 2004). Last, resources for testing
may be limited.

The information presented in this study strictly
focused on the extent of arsenic contamination
in water supplies across Arizona from readily
available databases. The lack of information
regarding  water resource  characteristics,
sampling practices, and other hydrogeochemical
information were not presented and therefore do
not allow comment on how these factors could
influence arsenic contamination or mobilization.
Though these limitations do not paint a complete
hydrogeochemical profile of water in Arizona,
they provide a collected map that displays
arsenic contamination and details counties
where arsenic is prevalent. The map additionally
demonstrates whether water resources are likely
to be contained in surface or groundwater, which
allows regulatory and governmental agencies to
take steps to locate and possibly mitigate input
into these resources.

As Arizona, and much of the Southwestern U.S.,
prepares for another year of limited precipitation
and drought conditions, the question of clean and
safe consumable water is important. A recent study
from Sonora, Mexico demonstrates a clear link
between arsenic levels in wells used for drinking
water, urinary arsenic levels in children, and
hazard risk for negative health outcomes (Garcia-
Rico et al. 2019). Such studies demonstrate the
importance of understanding the potential risk of
arsenic exposure especially for those populations
who may not always have access to municipal
water resources.

Spurred by worsening drought conditions,
in 2017 the Governor of Arizona authorized
the Arizona Department of Water Resources to
conduct studies that detail the extent of water
security and purity (MacEachern 2017). Tribal
governments, such as the Navajo Nation, have
already adopted similar policies and contingency
plans to address this growing concern (Navajo
Nation Department of Water Resources 2003).
Decreased precipitation and snowmelt recharge
in combination with increased water consumption
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from growing population centers and resource
extraction represent a significant stressor to water
resources (Maupin et al. 2014; Eden et al. 2015).
These factors could act to concentrate arsenic as
the amount of water in these systems drop and
present another looming concern for public health
and safety. The collective maps in this study
provide another resource for legislators, regulators,
and community members to face the challenge of
providing safe drinking water to Arizona and limit
public health risks.

Conclusions

This study demonstrates that many ground and
surface water resources in Arizona have levels of
arsenic above the current drinking water limits.
The data also demonstrate a lack of data available
for many of the Native American jurisdictions
throughout the state. Many populations in rural
areas throughout the state rely on well water and
do not have access to the water treatment available
to municipal customers. These maps may provide
information for local water resource managers
to evaluate both the need for more arsenic
sampling and for providing information to water
users regarding their water quality. This need is
especially important for many of the tribal regions
throughout Arizona.
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