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S
urface soil moisture accounts for an estimated 

0.001% of the volume of Earth’s freshwater, 

and yet, this tiny layer of water plays a 

powerful role in the hydrologic cycle (McColl 

et al. 2017). The amount of water in the top soil 

influences how much heat is exchanged between 
the land and the atmosphere, along with important 

hydrologic processes, such as precipitation, river 

discharge, flood, and drought. Due to its influence, 
soil moisture is used to forecast weather, predict 

climate change, estimate agricultural yields, 

and provide early warning for flood and drought 
(Entekhabi et al. 2010). 

The interplay of precipitation and soil moisture 

strongly affects the terrestrial water and energy 
cycles. Some aspects of this relationship are 

straight-forward, while others are controversial. 

The spatial and temporal patterns of soil moisture 

depend on the variability of precipitation, 
evapotranspiration, and runoff (Famiglietti 
and Rodell 2013; McCabe and Wolock 2013). 
However, there are more uncertainties regarding 

soil moisture’s role as a feedback mechanism for 
precipitation and other hydrologic components 

than its dependence on above-mentioned 
hydrologic components (Koster et al. 2004; James 

and Roulet 2009; Liang et al. 2010). 

The interaction between soil moisture and 
precipitation is complex, varying regionally in 
correlation direction (i.e., positive/negative) and 

magnitude (i.e., weak/strong). Previous research 

has identified some physical mechanisms causing 
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positive correlations between soil moisture and 
precipitation (Findell and Eltahir 1997; Eltahir 
1998; Zheng and Eltahir 1998). These studies 

support the hypothesis that wetter soil can provide 

abundant moisture to the atmosphere, increasing 
humidity and, as a result, enhancing precipitation. 

From the energy-balance point of view, wetter 
soil decreases the surface albedo that allows for 
an increase in net solar and terrestrial radiation, 

and an increase in moisture convergence, which 

may ultimately enhance the precipitation. Such a 

mechanism supports the well-known hypothesis, 

“wet regions get wetter, dry regions get drier,” 

which theorizes higher risks of floods in wet 
regions and higher risks of droughts in dry areas. 

However, recent studies suggest that in certain 

localities, soil moisture and precipitation are 

negatively correlated (Cook et al. 2006; Guillod 

et al. 2015; Yang et al. 2018). For example, more 
precipitation is observed in dry soil regions such 
as Southern Africa because of the strengthened 
convective system (Cook et al. 2006), which 

indicates an increase in the risk of floods in dry 
areas. This opposite phenomenon challenges the 

well-known “wet regions get wetter, dry regions 

get drier” trend (Greve et al. 2014; Feng and 
Zhang 2015) and creates controversy about the 
soil moisture-precipitation relationship. Moreover, 

the soil moisture and precipitation interaction 

is strongly affected by the local climate and 
environment (Boé 2013; Ford et al. 2015a; Ford 
et al. 2015b). These bodies of research imply that 
environmental factors, such as land cover and 

climate regimes, may play a significant role in how 
soil moisture interacts with precipitation.

In addition to environmental factors, the 

study of soil moisture and precipitation is further 

complicated by the availability and quality 
of the data. The technology of soil moisture 

measurements has dramatically advanced in recent 

years. They are no longer limited to sparse networks 

of in-situ samplings but have near-global coverage 
through remote sensing. The Satellite era soil 

moisture datasets include Advanced Microwave 

Scanning Radiometer - Earth Observing System 
(AMSR-E) (Wentz et al. 2014), Soil Moisture and 
Ocean Salinity (SMOS) (Kerr et al. 2013), and 

Soil Moisture Active Passive (SMAP) (O’Neill 

et al. 2016). Although these datasets represent 

great technological advances in the study of soil 

moisture, they require validation to ensure data 
quality. 

Launched in 2015, SMAP is the newest satellite 

soil moisture dataset. Like its predecessor SMOS, 

SMAP has an L-band radiometer, ideal for detecting 
soil moisture through layers of vegetation. The 

initial science objective of the SMAP mission was to 
provide unprecedented, high-resolution global soil 
moisture data from the combination of the active 
and passive sensors. Unfortunately, the power 

source of SMAP’s active radar lost functionality 

months after its deployment. Thankfully, data 

from SMAP’s passive radiometer were salvaged, 

albeit at a coarser resolution. As a newer dataset, 
and in light of the technical challenges that befell 
the SMAP mission, validation of SMAP data is 

necessary to understand if the mission was still 

successful in producing valuable soil moisture 
data, after losing its most important sensor. 

SMAP was considered a better dataset than 
AMSR2, when compared with in-situ soil 

moisture samples across the Great Plains (Zhang 

et al. 2017). SMAP also outranked seven other 

satellite soil moisture datasets, in comparison to 

in-situ soil moisture data, over the Little Washita 
Watershed Network (Cui et al. 2018). Additionally, 
SMAP products have been validated against one 
another, including the data produced from the 

active sensor, from the passive sensor, and from 

the combination of the active and passive sensor. 
In a validation study over Northwestern China, 

SMAP’s passive sensor’s soil moisture dataset 

fared better than datasets from the active sensor, 
and all three datasets were shown to estimate soil 

moisture better over bare soils than over soils with 
vegetation (Ma et al. 2017). 

The goal of this study is to assess the relationship 

between soil moisture and precipitation at a global 
scale using SMAP soil moisture measurements and 

Tropical Rainfall Measuring Mission (TRMM) 

precipitation estimates, and to investigate how such 

a relationship varies with different land cover type 
and climate regime. It is worth noting that this is the 

first attempt to relate SMAP soil moisture data to 
TRMM precipitation data over a global coverage. 
This study also explores the possibility of using 
TRMM precipitation data to validate SMAP soil 

moisture data. TRMM is a well-respected dataset 
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in the satellite precipitation community (Sapiano 

and Arkin 2009). In theory, the SMAP data will 

clearly reflect increased soil moisture levels over 
regions where the TRMM satellite indicates 

precipitation. Because the expected relationship 
between precipitation and soil moisture is 
strong, precipitation would be used to informally 
validate the accuracy of soil moisture data. Strong 

correlations between the TRMM precipitation and 
SMAP soil moisture datasets could be interpreted 
as indication of SMAP’s accurately estimating 

global soil moisture levels. However, it is also 
understood that many factors, such as land cover 

and climate, influence the infiltration of rain water 
into soil. 

Data

Soil moisture data come from the SMAP satellite, 

available through the National Snow and Ice Data 
Center (NSIDC) (https://nsidc.org/data/SPL3SMP/

versions/4). Despite losing the functionality of its 
active microwave radar, soil moisture estimates 

using SMAP’s passive microwave radiometer 

have proven to outperform other satellite soil 

moisture datasets when compared to in-situ soil 

moisture data (Ma et al. 2017; Cui et al. 2018). 

SMAP’s microwave radiometer senses the thermal 

heat radiating from the surface of the earth, and 

the intensity of heat sensed is proportional to the 

product of the thermal emissivity and brightness 
temperature. The soil moisture measurements 

were estimated using the Tau-Omega model 

and brightness temperatures (Das et al. 2015). 
SMAP’s sensor measures the near-surface soil 

moisture (0-5 cm depth) in cm3/cm3. The Level 3, 

Version 4 dataset used in this study comes from 

SMAP’s passive microwave radiometer providing 

daily coverage from March 31, 2015 (O’Neill 

et al. 2016). However, near-global coverage is 
only available every three days (Entekhabi et al. 
2014). The data’s nominal spatial resolution is 36 

km by 36 km, based on the Equal-Area Scalable 
Earth Grid (EASE-Grid) 2.0 (Brodzik et al. 2012). 

Global spatial coverage is limited to Latitudes 
85.044° to -85.044° and Longitudes -180° to 180°. 

Additionally, SMAP Level 3 retrievals are bound 
to vegetation and ice thresholds. SMAP Level 3 

data contain vegetation flags for any grid cell with 

a vegetative water content greater than 5 kg/m². 

SMAP Level 3 data also have a frozen soil flag 
which assesses the frozen soil area fraction. When 
the frozen soil area fraction is greater than 0.5, a 

flag is set and soil moisture is not retrieved (O’Neill 
et al. 2018). Because of SMAP’s vegetation and 

ice flags, soil moisture data are unavailable in 
certain regions of the Amazon Rainforest and in 

some higher latitude locations.

Precipitation data come from the TRMM 

satellite, available through the NASA Goddard 
Earth Sciences (GES) Data and Information 
Center (DISC) (https://disc.gsfc.nasa.gov/datasets/

TRMM_3B42_Daily_V7/summary). TRMM 

collected data through its passive microwave 

sensor and precipitation radar. This study utilizes 

the 3B42 Version 7 Research Derived Daily 
Product dataset (Huffman and Bolvin 2015). 
The spatial resolution of the data is 0.25° by 
0.25° with the near-global coverage of Latitudes 
50° to -50° and Longitudes -180° to 180°. This 

dataset is based on the Version 7 TRMM Multi-
Satellite Precipitation Analysis (TMPA) algorithm, 

which consists of passive microwave derived 

precipitation estimates and microwave-calibrated 
infrared precipitation estimates filling in the gaps 
of microwave imageries, corrected by ground-
based gauges (Huffman et al. 2007). 

The Moderate Resolution Imaging 

Spectroradiometer (MODIS) instrument on 
NASA’s Terra and Aqua satellites, provides land 
cover classifications through the University of 
Maryland’s Global Land Cover Facility. This 
study uses the MCD12Q1, Version 5.1 dataset, 
specifically the most recent 2012 classification 
(Channan et al. 2014). The classification includes 
17 land cover types with 0.5° by 0.5° spatial 
resolution. Latitudinal coverage spans -64° to 84° 

and longitudinal coverage spans -180° to 180°.

The Köppen-Geiger climate classification (Peel 
et al. 2007) was obtained through NASA’s Oak 
Ridge National Laboratory (ORNL) Distributed 
Active Archive Center (DAAC) (https://

webmap.ornl.gov/ogc/dataset.jsp?ds_id=10012). 

This dataset categorizes the globe by climate, 
considering average temperature and precipitation 

trends. The classification scheme identifies five 
main climates, six categories of precipitation, 
and seven categories of temperature. The spatial 
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resolution is 0.5° by 0.5° with latitudinal coverage 
spanning -90° to 90° and longitudinal coverage 

spanning -180° to 180°.

Methodology

In order to assess the relationship of precipitation 

and soil moisture, the two datasets were 

preprocessed to have the same spatial coverage 

and uniform grid resolution. Through examining 
the SMAP soil moisture estimates, it showed that 

the 8-day composites of the soil moisture were 

able to provide optimal global coverage, while 
the suggested 3-day composites (Entekhabi et 
al. 2014) still have spatial gaps. Thus, the 8-day 

composites of SMAP soil moisture were created, 

which contain the average soil moisture estimate 

from the samples within that period. Composites 

using the least number of days were preferred 
over monthly composites, for example, in order 
to highlight the more immediate interactions 

between precipitation events and soil moisture, as 
close in time to the events as possible. Likewise, 
8-day composited averages were created for the 

TMPA precipitation data. The study period is from 

March 31, 2015 to June 23, 2016. Three SMAP 

daily estimates were unavailable (May 13, 2015, 
December 16, 2015, and May 1, 2016). In total, 448 
daily files were compiled into 56 8-day composites 
for each dataset over the study period. Next, 
SMAP soil moisture’s composites were subset to 
the TMPA’s spatial coverage. In order to obtain 
uniform grid resolution between the datasets, 
TMPA’s grid resolution of 0.25° by 0.25° was 
linearly interpolated to SMAP’s EASE-Grid 2.0 

nominal resolution of 0.36° by 0.36°. Such linear 
interpolation is a common technique of matching 
datasets spatial resolutions for further analysis in 

the hydrology community (e.g., AghaKouchak et 

al. 2011; Pan et al. 2019). 

Finally, TMPA data were correlated to SMAP 
data, using MATLAB’s “corrcoef” function. The 

formula used in “corrcoef” function to compute 

Pearson’s Correlation Coefficient is shown below 
(Fisher 1958):

Where, ρ is the correlation coefficient between 
TMPA precipitation (T) and SMAP soil moisture 

values (S) per grid cell; N is the total number of grid 
cells; T

i
 is the precipitation value per grid cell; S

i
 is 

the soil moisture value per grid cell; μ
T
 is the mean of 

T; μ
S  

is the mean of S; and σ
T
 and σ

S
 are the standard 

deviations of T and S, respectively. Both Pearson’s 

Correlation Coefficient and p-values indicating a 
confidence level of 95% were calculated for each 
grid location, except oceans and grids with missing 
data. After correlation coefficient values were 
calculated, significance tests (using p-values) were 
carried out to determine which coefficient values 
were statistically significant. The percentages 
of grids with statistically significant correlation 
values were calculated according to correlation 

strength. Three locations were selected for time 

series analysis, in order to display a region with 

a strong positive correlation value, an irrigated 

region, and a region with a negative correlation 

value. 

To investigate how environmental factors affect 
soil moisture-precipitation interactions, results 

were spatially summarized according to land 

cover types and climate regimes. First, statistically 
significant correlation coefficient values were 
interpolated using linear interpolation to match 

MODIS Land Cover Classification grid resolution 
of 0.5° by 0.5°. Next, the land cover classification 
data were used to index correlation values 
according to their land cover type; the correlation 

values were spatially averaged, resulting in one 

average correlation value per land cover type. 

The same process was carried out for climate 

classification defined by the Köppen-Geiger 
climate classification, which results in one average 
correlation value per climate class.

Results

Figure 1 displays a sample 8-day composite 
obtained from TMPA daily products, spanning March 
31, 2015 to April 7, 2015. Figure 2 displays a sample 
8-day composite obtained from SMAP during the 
same period. These figures show the pattern that 
regions with the highest levels of precipitation (Figure 
1) generally occur where regions experience the 
highest soil moisture levels (Figure 2). The strong 
relationship between these two figures indicates that 
elevated precipitation is generally associated with 

elevated soil moisture levels.
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Figure 3 displays Pearson’s correlation 
coefficient for 8-day composites of the TMPA 
precipitation and SMAP soil moisture datasets 

in the study period. This figure shows a pattern 
of moderate to very strong positive correlations 

occurring in every continent. The strongest 

correlations occurred in Africa, Central America, 

the Middle East, Asia, Australia, the eastern portion 

of South America, and much of the Western United 
States. Moderate to weak correlations occurred in 

the Central and Eastern United States, Northern 

and Southern Africa, and north-east of the African 

Sahel. Additionally, moderate to weak correlations 

occurred throughout Europe, Southern Australia, 

Malaysia, Indonesia, and Papua New Guinea. 

On the other hand, Figure 3 shows that the largest 
negatively correlated regions occurred in major 
river basins, such as the Amazon and Congo. This 
could be due to the physical process of hydraulic 
redistribution. Harper et al. (2010) documented that 

Figure 1. A sample 8-day composite of daily precipitation data obtained from TRMM 3B42 V7 from 
March 31, 2015 to April 7, 2015.

Figure 2. A sample 8-day composite of daily soil moisture data obtained from SMAP from March 31, 2015 
to April 7, 2015.
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Amazon trees with long roots perform hydraulic 

redistribution from deep to shallow soil, in order 
to survive dry seasons. Yan and Dickinson (2014) 
assert that a similar process occurs in the Congo 

River Basin, where deeply rooted trees perform 

hydraulic redistribution. In addition, non-positive 
correlations occur in Northeast Africa and Japan, 

and both coincide with river systems. The physical 
process of river transport creates conditions leading 

to an inverse relationship between precipitation 
and soil moisture: when precipitation occurs 

upstream, it would cause downstream portions of 

the river to expand, without downstream regions 
necessitating direct precipitation. Such is the case 

in Northeast Africa, where the Nile River is famous 

for its seasonal expansion. Heavy rains occur on 
the Nile River in Ethiopia and cause it to expand 
as it heads north into Egypt and Sudan (Conway 

2000). Therefore, soil moisture along the Nile in 

Sudan and Egypt increases, independent of direct 

rainfall in Sudan and Egypt (Conway 2005). 

Figure 4 displays the percentages of 
varying correlation strengths, which show that 

precipitation and soil moisture mostly correlate 

moderately to very strongly. 72.89% of the 

statistically significant grids displayed a moderate 
to very strong correlation, while 21.62% exhibited 
weak to very weak correlations. In addition 

to the prevalence of moderate to very strong 

correlations, the correlations are mostly positive, 

covering 93.07% of the globe, which is consistent 
with the previous literature (Findell and Eltahir 
1997; Eltahir 1998; Zheng and Eltahir 1998). In 

these locations, as precipitation increases, soil 

moisture increases; or as precipitation decreases, 

soil moisture also decreases. The general trend 

of a moderate to strong correlation magnitude 

and a positive correlation direction supports the 

hypothesis that typically, precipitation leads to 

an increase in soil moisture. However, 1.44% of 

grids have negative correlations, indicating that 

soil moisture reacts to precipitation in an opposite 

way. Such negative relationships were observed by 
several other studies and were caused by different 
environmental and climatic factors (Cook et al. 

2006; Guillod et al. 2015). For instance, Yang 
et al. (2018) specified that negative correlations 
occur in locations which have physical, limiting 

mechanisms such as having limited soil moisture, 

or being low in energy input. 
One sample grid from each of the three 

locations, in Central America, Central California, 

and the Amazon Rainforest, was selected to show 

how SMAP soil moisture varies with TMPA 

precipitation for a region with a strong positive 

correlation, an irrigated region, and a region with 

Figure 3. TMPA precipitation versus SMAP soil moisture correlation coefficients by grid cell with significant 
P values (< 0.05). 8-day composites spanning March 31, 2015 to June 23, 2016. The non-significant correlation 
coefficients are omitted and these grids are colored white. Red-colored rectangles located in Central America, 
Central California, and the Amazon Rainforest indicate time series locations for Figure 5.
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a negative correlation, respectively. Figure 5a 
displays a time series of TMPA precipitation and 

SMAP soil moisture in Central America for the 

study period. This location represents a region 

where correlation coefficients are predominantly 
positive and moderately strong. The figure 
reveals a pattern that where precipitation rises soil 

moisture also rises. Figure 5b displays a time series 
in Central California, a heavily irrigated location. 

Patterns seen in the figure show that increases 
in precipitation coincide with increases in soil 

moisture, but increases in soil moisture also occur 
at times when precipitation does not occur. This 

dynamic is an expected scenario in the context of 
irrigation and watering of crop lands. Figure 5c 
displays a time series in the Amazon Rainforest, 

where concentrations of negative correlations 

occur. The figure reveals the pattern that soil 
moisture increases at times when precipitation is 

not present, which agrees with the findings from 
Harper et al. (2010) that top soil is moistened by 
groundwater during the dry season through the 

hydraulic redistribution process.
The average correlation coefficient by land cover 

type over the study period is shown in Figures 6 
and 7 in order to understand how the precipitation 

and soil moisture relationship varies with the 

land cover. These figures reveal that precipitation 
and soil moisture are positively correlated under 

every type of land cover. The strongest positive 

correlations are found in land cover classes such 

as savannas, closed shrublands, woody savannas, 
mixtures of cropland and natural vegetation, open 
shrublands, and barren or sparsely vegetated. 

The land cover region showing the weakest 

positive correlation was permanent wetlands. 

These findings indicate that precipitation and soil 
moisture have the strongest correlations in regions 

of limited vegetation, whereas forests and densely 

vegetated regions have weaker correlations 

between precipitation and soil moisture. Figures 
8 and 9 display the average correlation between 
TMPA precipitation and SMAP soil moisture, by 
Köppen-Geiger climate classification regimes. 
The same pattern was discovered as the land cover 

analysis, indicating that the precipitation and soil 

moisture correlation is positive across the climate 

regimes after averaging the correlation values per 

climate regime. These two figures reveal that South 
America, Africa, India, Australia, Central America, 

and parts of Europe have the highest correlation 

values. Also, precipitation and soil moisture have 

the strongest correlations in regions that are arid 

and dry or cold, and weaker correlations in humid, 

temperate locations.

Conclusion

This study assessed the relationship between 
precipitation and soil moisture using remotely 

sensed TRMM and SMAP measurements from 

March 31, 2015 to June 23, 2016. In order to 

calculate the correlation coefficients and their 
significances across the globe, 8-day composites 
of each dataset were created for coherent global 
coverage. Most grids showed a moderate to strong 

positive correlation between SMAP soil moisture 
and TMPA precipitation data. Precipitation and soil 

Figure 4. Bar plot of correlation strength by percent of total statistically significant grids.
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Figure 5. Time series for three locations in a) Central America, b) Central California, and c) Amazon Basin.

a)

b)

c)
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moisture have the strongest correlations in regions 

of limited vegetation, whereas forests and densely 

vegetated regions have weaker correlations. 

Similarly, precipitation and soil moisture have the 

strongest correlations in regions that are arid and 

dry or cold, and weaker correlations in humid, 

temperate locations. 

Overall, this study revealed that the relationship 

between precipitation and soil moisture goes 
deeper than what is seen on the surface. Although 

several other studies have revealed that negative 

correlations exist between precipitation and soil 
moisture (Cook et al. 2006; Guillod et al. 2015; 

Yang et al. 2018), the time series analysis conducted 

in this study reveals which of two mechanisms 

is causing negative correlations: either a) soil 

moisture increases while precipitation does not 

increase (i.e., decreases or stays the same) or b) 
soil moisture decreases while precipitation does 

not decrease (i.e., increases or stays the same). 

The time series helped explain that, specifically, 
in both the Amazon Rainforest and in Central 
California, soil moisture, at times, increased while 

precipitation did not increase. This study indicates 

that soil moisture and precipitation are not always 

positively correlated, and that the relationship 

Figure 6. Average correlation coefficients by land cover type.

Figure 7. Bar plot of average correlation coefficient by land cover type.
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between them tends to be inverse in major river 
basins, plausibly due to two physical processes, 
including hydraulic redistribution by tropical trees 
(Harper et al. 2010; Yan and Dickinson 2014), as 
well as river transport and expansion caused by 
upstream precipitation (Conway 2000, 2005).

Additionally, this study served as an informal 

validation of SMAP soil moisture data using 

TMPA precipitation data. TMPA precipitation 

helped validate SMAP soil moisture because 
in most locations on the globe, when moderate 
rain occurred soil moisture also increased, as 

indicated by predominantly positive correlations. 
The presence of negative correlations in this 

study may also add to the validity of SMAP data 

rather than taking away from it. For example, 
logically, irrigated regions should, at times, show 

an opposite relationship between soil moisture and 

Figure 8. Average correlation coefficients by Koppen-Geiger climate classification regimes.

Figure 9. Bar plot of average correlation coefficient by Koppen-Geiger climate classification regimes.
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precipitation. In addition, certain rainforests show 

an opposite relationship between soil moisture and 
precipitation, due to recent findings that rainforest 
tree roots transport groundwater to the top soil in 

order to survive dry seasons (Harper et al. 2010). 

Moreover, this study of incorporating landcover 

and climate regimes in our analyses further supports 

SMAP’s credibility based on the different types 
of landcover and climate regimes. For example, 
savanna landcover and arid/steppe/hot climates 

experience a strong correlation between TRMM 
and SMAP because both precipitation and soil 
moisture are truly low in these environments, and 

both satellites were able to reflect those conditions. 
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